ﻻ يوجد ملخص باللغة العربية
We present a new technique named Meta Deformation Network for 3D shape matching via deformation, in which a deep neural network maps a reference shape onto the parameters of a second neural network whose task is to give the correspondence between a learned template and query shape via deformation. We categorize the second neural network as a meta-function, or a function generated by another function, as its parameters are dynamically given by the first network on a per-input basis. This leads to a straightforward overall architecture and faster execution speeds, without loss in the quality of the deformation of the template. We show in our experiments that Meta Deformation Network leads to improvements on the MPI-FAUST Inter Challenge over designs that utilized a conventional decoder design that has non-dynamic parameters.
Point signature, a representation describing the structural neighborhood of a point in 3D shapes, can be applied to establish correspondences between points in 3D shapes. Conventional methods apply a weight-sharing network, e.g., any kind of graph ne
Neural Module Network (NMN) exhibits strong interpretability and compositionality thanks to its handcrafted neural modules with explicit multi-hop reasoning capability. However, most NMNs suffer from two critical drawbacks: 1) scalability: customized
In this paper, we propose a novel meta learning approach for automatic channel pruning of very deep neural networks. We first train a PruningNet, a kind of meta network, which is able to generate weight parameters for any pruned structure given the t
Recent research on super-resolution has achieved great success due to the development of deep convolutional neural networks (DCNNs). However, super-resolution of arbitrary scale factor has been ignored for a long time. Most previous researchers regar
Meta-learning has been the most common framework for few-shot learning in recent years. It learns the model from collections of few-shot classification tasks, which is believed to have a key advantage of making the training objective consistent with