ترغب بنشر مسار تعليمي؟ اضغط هنا

Photo-physics and electronic structure of lateral graphene/MoS2 and metal/MoS2 junctions

114   0   0.0 ( 0 )
 نشر من قبل Shruti Subramanian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integration of semiconducting transition metal dichalcogenides (TMDs) into functional optoelectronic circuitries requires an understanding of the charge transfer across the interface between the TMD and the contacting material. Here, we use spatially resolved photocurrent microscopy to demonstrate electronic uniformity at the epitaxial graphene/molybdenum disulfide (EG/MoS2) interface. A 10x larger photocurrent is extracted at the EG/MoS2 interface when compared to metal (Ti/Au) /MoS2 interface. This is supported by semi-local density-functional theory (DFT), which predicts the Schottky barrier at the EG/MoS2 interface to be ~2x lower than Ti/MoS2. We provide a direct visualization of a 2D material Schottky barrier through combination of angle resolved photoemission spectroscopy with spatial resolution selected to be ~300 nm (nano-ARPES) and DFT calculations. A bending of ~500 meV over a length scale of ~2-3 micrometer in the valence band maximum of MoS2 is observed via nano-ARPES. We explicate a correlation between experimental demonstration and theoretical predictions of barriers at graphene/TMD interfaces. Spatially resolved photocurrent mapping allows for directly visualizing the uniformity of built-in electric fields at heterostructure interfaces, providing a guide for microscopic engineering of charge transport across heterointerfaces. This simple probe-based technique also speaks directly to the 2D synthesis community to elucidate electronic uniformity at domain boundaries alongside morphological uniformity over large areas.

قيم البحث

اقرأ أيضاً

Two-dimensional monolayer transition metal dichalcogenides (TMDs) have unique optical and electronic properties for applications pertaining to field effect transistors, light emitting diodes, photodetectors, and solar cells. Vertical interfacing of W S2 and MoS2 layered materials in combination with other families of 2D materials were previously reported. On the other hand, lateral heterostructures are particularly promising for the spatial confinement of charged carriers, excitons and phonons within an atomically-thin layer. In the lateral geometry, the quality of the interface in terms of the crystallinity and optical properties is of paramount importance. Using plasmonic near-field tip-enhanced technology, we investigated the detailed nanoscale photoluminescence (nano-PL) characteristics of the hetero-interface in a monolayer WS2-MoS2 lateral heterostructure. Focusing the laser excitation spot at the apex of a plasmonic tip improved the PL spatial resolution by an order of magnitude compared to the conventional far-field PL. Nano-PL spatial line profiles were found to be more pronounced and enhanced at the interfaces. By analyzing the spectral signals of the heterojunctions, we obtained a better understanding of these direct band gap layered semiconductors, which may help to design next-generation smart optoelectronic devices.
Developing novel techniques for depositing transition metal dichalcogenides is crucial for the industrial adoption of 2D materials in optoelectronics. In this work, the lateral growth of molybdenum disulfide (MoS2) over an insulating surface is demon strated using electrochemical deposition. By fabricating a new type of microelectrodes, MoS2 2D films grown from TiN electrodes across opposite sides have been connected over an insulating substrate, hence, forming a lateral device structure through only one lithography and deposition step. Using a variety of characterization techniques, the growth rate of MoS2 has been shown to be highly anisotropic with lateral to vertical growth ratios exceeding 20-fold. Electronic and photo-response measurements on the device structures demonstrate that the electrodeposited MoS2 layers behave like semiconductors, confirming their potential for photodetection applications. This lateral growth technique paves the way towards room temperature, scalable and site-selective production of various transition metal dichalcogenides and their lateral heterostructures for 2D materials-based fabricated devices.
In this work, we have presented a first principle simulation study on the electronic properties of MoS2/MX2/MoS2 (M=Mo or W; X=S or Se) trilayer heterostrcuture. We have investigated the effect of stacking configuration, bi-axial compressive and tens ile strain on the electronic properties of the trilayer heterostructures. In our study, it is found that, under relaxed condition all the trilayer heterostructures at different stacking configurations show semiconducting nature. The nature of the bandgap however depends on the inserted TMDC monolayer between the top and bottom MoS2 layers and their stacking configurations. Like bilayer heterostructures, trilayer structures also show semiconducting to metal transition under the application of tensile strain. With increased tensile strain the conduction band minima shifts to K point in the brillouin zone and lowering of electron effective mass at conduction band minima is observed. The study on the projected density of states reveal that, the conduction band minima is mostly contributed by the MoS2 layers and states at the valance band maxima are contributed by the middle TMDC monolayer.
We present in-depth measurements of the electronic band structure of the transition-metal dichalcogenides (TMDs) MoS2 and WS2 using angle-resolved photoemission spectroscopy, with focus on the energy splittings in their valence bands at the K point o f the Brillouin zone. Experimental results are interpreted in terms of our parallel first-principles computations. We find that interlayer interaction only weakly contributes to the splitting in bulk WS2, resolving previous debates on its relative strength. We additionally find that across a range of TMDs, the band gap generally decreases with increasing magnitude of the valence-band splitting, molecular mass, or ratio of the out-of-plane to in-plane lattice constant. Our results provide an important reference for future studies of electronic properties of MoS2 and WS2 and their applications in spintronics and valleytronics devices.
73 - Sachin Gupta 2019
Two-dimensional MoS2 has emerged as promising material for nanoelectronics and spintronics due to its exotic properties. However, high contact resistance at metal semiconductor MoS2 interface still remains an open issue. Here, we report electronic pr operties of field effect transistor devices using monolayer MoS2 channels and permalloy (Py) as ferromagnetic (FM) metal contacts. Monolayer MoS2 channels were directly grown on SiO2/Si substrate via chemical vapor deposition technique. The increase in current with back gate voltage shows the tunability of FET characteristics. The Schottky barrier height (SBH) estimated for Py/MoS2 contacts is found to be +28.8 meV (zero-bias), which is the smallest value reported so-far for any direct metal (magnetic or non-magnetic)/monolayer MoS2 contact. With the application of gate voltage (+10 V), SBH shows a drastic reduction down to a value of -6.8 meV. The negative SBH reveals ohmic behavior of Py/MoS2 contacts. Low SBH with controlled ohmic nature of FM contacts is a primary requirement for MoS2 based spintronics and therefore using directly grown MoS2 channels in the present study can pave a path towards high performance devices for large scale applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا