ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial decomposition of magnetic anisotropy in magnets: application for doped Fe16N2

62   0   0.0 ( 0 )
 نشر من قبل Yang Sun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a scheme of decomposition of the total relativistic energy in solids to intra- and interatomic contributions. The method is based on a variation of the speed of light from its value in relativistic theory to infinity (a non-relativistic limit). As an illustration of the method, we tested such decomposition in the case of a spin-orbit interaction variation for decomposition of the magnetic anisotropy energy (MAE) in CoPt. We further studied the {alpha}-Fe16N2 magnet doped by Bi, Sb, Co and Pt atoms. It has been found that the addition of Pt atoms can enhance the MAE by as large as five times while Bi and Sb substitutions double the total MAE. Using the proposed technique we demonstrate the spatial distribution of these enhancements. Our studies also suggest that Sb, Pt and Co substitutions could be synthesized by experiments.



قيم البحث

اقرأ أيضاً

Magnetocrystalline anisotropy (MCA) in doped Ce$_{2}$Co$_{17}$ and other competing structures was investigated using density functional theory. We confirmed that the MCA contribution from dumbbell Co sites is very negative. Replacing Co dumbbell atom s with a pair of Fe or Mn atoms greatly enhance the uniaxial anisotropy, which agrees quantitatively with experiment, and this enhancement arises from electronic-structure features near the Fermi level, mostly associated with dumbbell sites. With Co dumbbell atoms replaced by other elements, the variation of anisotropy is generally a collective effect and contributions from other sublattices may change significantly. Moreover, we found that Zr doping promotes the formation of 1-5 structure that exhibits a large uniaxial anisotropy, such that Zr is the most effective element to enhance MCA in this system.
We report on the micro-photoluminescence spectroscopy of InAs/GaAs quantum dots (QD) doped by a single Mn atom in a magnetic field either longitudinal or perpendicular to the optical axis. In both cases the spectral features of positive trion (X+) ar e found to split into strongly circularly polarized components, an effect very surprising in a perpendicular magnetic field. The field-induced splitting is ascribed to the transverse Zeeman splitting of the neutral acceptor complex A0 issued by the Mn impurity, whereas the circular optical selection rules result from the p-d exchange which acts as a very strong longitudinal magnetic field inhibiting the spin mixing by the transverse field of the QD heavy-hole ground state. A theoretical model of the spin interactions which includes (i) the local strain anisotropy experienced by the acceptor level and (ii) the anisotropic exchange due to the out-of-center Mn position provides a very good agreement with our observations.
444 - Bin Shao , Min Feng , Hong Liu 2012
Based on first-principles calculations, we predict that the magnetic anisotropy energy (MAE) of Co-doped TiO$_2$ sensitively depends on carrier accumulation. This magnetoelectric phenomenon provides a promising route to directly manipulate the magnet ization direction of diluted magnetic semiconductor by external electric-fields. We calculate the band structures and reveal the origin of carrier-dependent MAE in k-space. In fact, the carrier accumulation shifts the Fermi energy and regulates the competing contributions to MAE. The first-principles calculations provide a straightforward way to design spintronics materials with electrically controllable spin direction.
532 - Bin Shao , Min Feng , Hong Liu 2012
Based on first-principles calculation, it has been predicted that the magnetic anisotropy energy (MAE) in Co-doped ZnO (Co:ZnO) depends on electron-filling. Results show that the charge neutral Co:ZnO presents a easy plane magnetic state. While modif ying the total number of electrons, the easy axis rotates from in-plane to out-of-plane. The alternation of the MAE is considered to be the change of the ground state of Co ion, resulting from the relocating of electrons on Co d-orbitals with electron-filling.
Magnetic materials with giant saturation magnetization have been a holy grail for magnetic researchers and condensed matter physicists for decades because of its great scientific and technological impacts. As described by the famous Slater-Pauling cu rve the material with highest Ms is the Fe65Co35 alloy. This was challenged in 1972 by a report on the compound Fe16N2 with Ms much higher than that of Fe65Co35. Following this claim, there have been enormous efforts to reproduce this result and to understand the magnetism of this compound. However, the reported Ms by different groups cover a broad range, mainly due to the unavailability of directly assessing Ms in Fe16N2. In this article, we report a direct observation of the giant saturation magnetization up to 2500 emu/cm3 using polarized neutron reflectometry (PNR) in epitaxial constrained Fe16N2 thin films prepared using a low-energy and surface-plasma-free sputtering process. The observed giant Ms is corroborated by a previously proposed Cluster + Atom model, the characteristic feature of which, namely, the directional charge transfer is evidenced by polarization-dependent x-ray absorption near edge spectroscopy (XANES).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا