ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation of Kepler field dwarfs and sub giants: Spectroscopic $v sin I$ from APOGEE

117   0   0.0 ( 0 )
 نشر من قبل Gregory Simonian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 5,337 spectroscopic $v sin i$ measurements of Kepler dwarfs and subgiants from the APOGEE survey to study stellar rotation trends. We find a detection threshold of 10 km/s, which allows us to explore the spindown of intermediate-mass stars leaving the main sequence, merger products, young stars, and tidally-synchronized binaries. We see a clear distinction between blue stragglers and the field turnoff in $alpha$-rich stars, with a sharp rapid rotation cutoff for blue stragglers consistent with the Kraft break. We also find rapid rotation and RV variability in a sample of red straggler stars, considerably cooler than the giant branch, lending credence to the hypothesis that these are active, tidally-synchronized binaries. We see clear evidence for a transition between rapid and slow rotation on the subgiant branch in the domain predicted by modern angular momentum evolution models. We find substantial agreement between the spectroscopic and photometric properties of KIC targets added by Huber et al (2014) based on 2MASS photometry. For the unevolved lower main sequence, we see the same concentration toward rapid rotation in photometric binaries as that observed in rotation period data, but at an enhanced rate. We attribute this difference to unresolved near-equal luminosity spectroscopic binaries with velocity displacements on the order of the APOGEE resolution. Among cool unevolved stars we find an excess rapid rotator fraction of 4% caused by pipeline issues with photometric binaries.



قيم البحث

اقرأ أيضاً

We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ($R$ $sim$ 22,500) $H$-band spectra from the SDSS IV - APOGEE survey. Chemical abundances o f thirteen elements - C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe - are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H$_{2}$O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H]$_{Kepler-138}$ = -0.09 $pm$ 0.09 dex and [Fe/H]$_{Kepler-186}$ = -0.08 $pm$ 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by $sim$0.1-0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 $pm$ 0.10 for Kepler-138 and 0.52 $pm$ 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.
Aims: We aim to measure the starspot rotation periods of active stars in the Kepler field as a function of spectral type and to extend reliable rotation measurements from F-, G-, and K-type to M-type stars. Methods: Using the Lomb-Scargle periodogr am we searched more than 150 000 stellar light curves for periodic brightness variations. We analyzed periods between 1 and 30 days in eight consecutive Kepler quarters, where 30 days is an estimated maximum for the validity of the PDC_MAP data correction pipeline. We selected stable rotation periods, i.e., periods that do not vary from the median by more than one day in at least six of the eight quarters. We averaged the periods for each stellar spectral class according to B - V color and compared the results to archival vsini data, using stellar radii estimates from the Kepler Input Catalog. Results: We report on the stable starspot rotation periods of 12 151 Kepler stars. We find good agreement between starspot velocities and vsini data for all F-, G- and early K-type stars. The 795 M-type stars in our sample have a median rotation period of 15.4 days. We find an excess of M-type stars with periods less than 7.5 days that are potentially fast-rotating and fully convective. Measuring photometric variability in multiple Kepler quarters appears to be a straightforward and reliable way to determine the rotation periods of a large sample of active stars, including late-type stars.
We analyzed Kepler short-cadence M dwarf observations. Spectra from the ARC 3.5m telescope identify magnetically active (H$alpha$ in emission) stars. The active stars are of mid-M spectral type, have numerous flares, and well-defined rotational modul ation due to starspots. The inactive stars are of early-M type, exhibit less starspot signature, and have fewer flares. A Kepler to U-band energy scaling allows comparison of the Kepler flare frequency distributions with previous ground-based data. M dwarfs span a large range of flare frequency and energy, blurring the distinction between active and inactive stars designated solely by the presence of H$alpha$. We analyzed classical and complex (multiple peak) flares on GJ 1243, finding strong correlations between flare energy, amplitude, duration and decay time, with only a weak dependence on rise time. Complex flares last longer and have higher energy at the same amplitude, and higher energy flares are more likely to be complex. A power law fits the energy distribution for flares with log $E_{K_p} >$ 31 ergs, but the predicted number of low energy flares far exceeds the number observed, at energies where flares are still easily detectable, indicating that the power law distribution may flatten at low energy. There is no correlation of flare occurrence or energy with starspot phase; the flare waiting time distribution is consistent with flares occurring randomly in time; and the energies of consecutive flares are uncorrelated. These observations support a scenario where many independent active regions on the stellar surface are contributing to the observed flare rate.
Eclipsing binaries (EBs) are unique benchmarks for stellar evolution. On the one hand, detached EBs hosting at least one star with detectable solar-like oscillations constitute ideal test objects to calibrate asteroseismic measurements. On the other hand, the oscillations and surface activity of stars that belong to EBs offer unique information about the evolution of binary systems. This paper builds upon previous works dedicated to red giant stars (RG) in EBs -- 20 known systems so far -- discovered by the NASA Kepler mission. Here we report the discovery of 16 RGs in EBs also from the Kepler data. This new sample includes three SB2-EBs with oscillations and six close systems where the RG display a clear surface activity and complete oscillation suppression. Based on dedicated high-resolution spectroscopic observations (Apache Point Observatory, Observatoire de Haute Provence), we focus on three main aspects. From the extended sample of 14 SB2-EBs, we first confirm that the simple application of the asteroseismic scaling relations to RGs overestimates masses and radii of RGs, by about 15% and 5%. This bias can be reduced by employing either new asteroseismic reference values for RGs, or model-based corrections of the asteroseismic parameters. Secondly, we confirm that close binarity leads to a high level of photometric modulation (up to 10%), and a suppression of solar-like oscillations. In particular, we show that it reduces the lifetime of radial modes by a factor of up to 10. Thirdly, we use our 16 new systems to complement previous observational studies that aimed at constraining tidal dissipation in interacting binaries. In particular, we identify systems with circular orbits despite relatively young ages, which suggests exploring complementary tidal dissipation mechanisms in the future. Finally, we report the measurements of mass, radius, and age of three M-dwarf companion stars.
71 - S.V.Jeffers 2018
CARMENES is a spectrograph for radial velocity surveys of M dwarfs with the aim of detecting Earth-mass planets orbiting in the habitable zones of their host stars. To ensure an optimal use of the CARMENES Guaranteed Time Observations, in this paper we investigate the correlation of activity and rotation for approximately 2200 M dwarfs, ranging in spectral type from M0.0 V to M9.0 V. We present new high-resolution spectroscopic observations with FEROS, CAFE, and HRS of approximately 500 M dwarfs. For each new observation, we determined its radial velocity and measured its Halpha activity index and its rotation velocity. Additionally, we have multiple observations of many stars to investigate if there are any radial velocity variations due to multiplicity. The results of our survey confirm that early-M dwarfs are Halpha inactive with low rotational velocities and that late-M dwarfs are Halpha active with very high rotational velocities. The results of this high-resolution analysis comprise the most extensive catalogue of rotation and activity in M dwarfs currently available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا