ﻻ يوجد ملخص باللغة العربية
In this note, we fix a graph $H$ and ask into how many vertices can each vertex of a clique of size $n$ can be split such that the resulting graph is $H$-free. Formally: A graph is an $(n,k)$-graph if its vertex sets is a pairwise disjoint union of $n$ parts of size at most $k$ each such that there is an edge between any two distinct parts. Let $$ f(n,H) = min {k in mathbb N : mbox{there is an $(n,k)$-graph $G$ such that $H otsubseteq G$}} . $$ Barbanera and Ueckerdt observed that $f(n, H)=2$ for any graph $H$ that is not bipartite. If a graph $H$ is bipartite and has a well-defined Turan exponent, i.e., ${rm ex}(n, H) = Theta(n^r)$ for some $r$, we show that $Omega (n^{2/r -1}) = f(n, H) = O (n^{2/r-1} log ^{1/r} n)$. We extend this result to all bipartite graphs for which an upper and a lower Turan exponents do not differ by much. In addition, we prove that $f(n, K_{2,t}) =Theta(n^{1/3})$ for any fixed $t$.
We extend the classical stability theorem of Erdos and Simonovits for forbidden graphs of logarithmic order.
We call a graph $G$ pancyclic if it contains at least one cycle of every possible length $m$, for $3le mle |V(G)|$. In this paper, we define a new property called chorded pancyclicity. We explore forbidden subgraphs in claw-free graphs sufficient to
Let $n, k, m$ be positive integers with $ngg mgg k$, and let $mathcal{A}$ be the set of graphs $G$ of order at least 3 such that there is a $k$-connected monochromatic subgraph of order at least $n-f(G,k,m)$ in any rainbow $G$-free coloring of $K_n$
The chromatic number of a graph is the minimum $k$ such that the graph has a proper $k$-coloring. There are many coloring parameters in the literature that are proper colorings that also forbid bicolored subgraphs. Some examples are $2$-distance colo
Motivated by a longstanding conjecture of Thomassen, we study how large the average degree of a graph needs to be to imply that it contains a $C_4$-free subgraph with average degree at least $t$. Kuhn and Osthus showed that an average degree bound wh