ترغب بنشر مسار تعليمي؟ اضغط هنا

CMB $V$ modes from photon-photon forward scattering revisited

79   0   0.0 ( 0 )
 نشر من قبل Giorgio Orlando
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent literature has shown that photon-photon forward scattering mediated by Euler-Heisenberg interactions may generate some amount of the circular polarization ($V$ modes) in the cosmic microwave background (CMB) photons. However, there is an apparent contradiction among the different references about the predicted level of the amplitude of this circular polarization. In this work, we will resolve this discrepancy by showing that with a quantum Boltzmann equation formalism we obtain the same amount of circular polarization as using a geometrical approach that is based on the index of refraction of the cosmological medium. We will show that the expected amplitude of $V$ modes is expected to be $approx$ 8 orders of magnitude smaller than the amplitude of $E$-polarization modes that we actually observe in the CMB, thus confirming that it is going to be challenging to observe such a signature. Throughout the paper, we also develop a general method to study the generation of $V$ modes from photon-photon and photon-spin-1-massive-particle forward scatterings without relying on a specific interaction, which thus represent possible new signatures of physics beyond the Standard Model.

قيم البحث

اقرأ أيضاً

We discuss the possibility of producing a light dark photon dark matter through a coupling between the dark photon field and the inflaton. The dark photon with a large wavelength is efficiently produced due to the inflaton motion during inflation and becomes non-relativistic before the time of matter-radiation equality. We compute the amount of production analytically. The correct relic abundance is realized with a dark photon mass extending down to $10^{-21} , rm eV$.
Rapidly rotating black holes are known to develop instabilities in the presence of a sufficiently light boson, a process which becomes efficient when the bosons Compton wavelength is roughly the size of the black hole. This phenomenon, known as black hole superradiance, generates an exponentially growing boson cloud at the expense of the rotational energy of the black hole. For astrophysical black holes with $M sim mathcal{O}(10) , M_odot$, the superradiant condition is achieved for bosons with $m_b sim mathcal{O}(10^{-11} ) , {rm eV}$; intriguingly, photons traversing the intergalactic medium (IGM) acquire an effective mass (due to their interactions with the ambient plasma) which naturally resides in this range. The implications of photon superradiance, i.e. the evolution of the superradiant photon cloud and ambient plasma in the presence of scattering and particle production processes, have yet to be thoroughly investigated. Here, we enumerate and discuss a number of different processes capable of quenching the growth of the photon cloud, including particle interactions with the ambient electrons and back-reactions on the effective mass (arising e.g. from thermal effects, pair-production, ionization of of the local background, and modifications to the dispersion relation from strong electric fields). This work naturally serves as a guide in understanding how interactions may allow light exotic bosons to evade superradiant constraints.
Axion-like fields heavier than about $10^{-27}$eV are expected to oscillate in the radiation dominated epoch when the Hubble parameter drops below their mass. Considering the Chern-Simons coupling with a dark gauge boson, large amount of dark photons are produced during a short time interval through tachyonic resonance instability. The produced dark photons then source gravitational tensor modes leading to chiral gravitational waves. Through this process, one can indirectly probe a large parameter space of coupled axion-dark photon models. In this work we first find an analytic expression for the number density of the dark photons produced during the tachyonic resonance regime. Second, by using the saddle point approximation we find an analytic expression for the gravitational wave spectrum in terms of the mass, coupling and misalignment angle. Our analytic results can be used for the observational analysis of these types of scenarios.
83 - Ki-Young Choi , Kenji Kadota , 2017
Many extensions of Standard Model (SM) include a dark sector which can interact with the SM sector via a light mediator. We explore the possibilities to probe such a dark sector by studying the distortion of the CMB spectrum from the blackbody shape due to the elastic scatterings between the dark matter and baryons through a hidden light mediator. We in particular focus on the model where the dark sector gauge boson kinetically mixes with the SM and present the future experimental prospect for a PIXIE-like experiment along with its comparison to the existing bounds from complementary terrestrial experiments.
54 - Sayantan Choudhury 2017
In this work, we study the key role of generic Effective Field Theory (EFT) framework to quantify the correlation functions in a quasi de Sitter background for an arbitrary initial choice of the quantum vacuum state. We perform the computation in uni tary gauge, in which we apply the St$ddot{text{u}}$ckelberg trick in lowest dimensional EFT operators which are broken under time diffeomorphism. In particular, using this non-linear realization of broken time diffeomorphism and truncating the action by considering the contribution from two derivative terms in the metric, we compute the two-point and three-point correlations from scalar perturbations and two-point correlation from tensor perturbations to quantify the quantum fluctuations observed in the Cosmic Microwave Background (CMB) map. We also use equilateral limit and squeezed limit configurations for the scalar three-point correlations in Fourier space. To give future predictions from EFT setup and to check the consistency of our derived results for correlations, we use the results obtained from all classes of the canonical single-field and general single-field $P(X,phi)$ model. This analysis helps us to fix the coefficients of the relevant operators in EFT in terms of the slow-roll parameters and effective sound speed. Finally, using CMB observations from Planck we constrain all these coefficients of EFT operators for the single-field slow-roll inflationary paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا