ترغب بنشر مسار تعليمي؟ اضغط هنا

On simple-minded systems over representation-finite self-injective algebras

124   0   0.0 ( 0 )
 نشر من قبل Zhen Zhang
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $A$ be a representation-finite self-injective algebra over an algebraically closed field $k$. We give a new characterization for an orthogonal system in the stable module category $A$-$stmod$ to be a simple-minded system. As a by-product, we show that every Nakayama-stable orthogonal system in $A$-$stmod$ extends to a simple-minded system.



قيم البحث

اقرأ أيضاً

73 - Jing Guo , Yuming Liu , Yu Ye 2020
Recently, we obtained in [7] a new characterization for an orthogonal system to be a simple-minded system in the stable module category of any representation-finite self-injective algebra. In this paper, we apply this result to give an explicit const ruction of simple-minded systems over self-injective Nakayama algebras.
Let $A$ be a finite-dimensional self-injective algebra over an algebraically closed field, $mathcal{C}$ a stably quasi-serial component (i.e. its stable part is a tube) of rank $n$ of the Auslander-Reiten quiver of $A$, and $mathcal{S}$ be a simple-m inded system of the stable module category $stmod{A}$. We show that the intersection $mathcal{S}capmathcal{C}$ is of size strictly less than $n$, and consists only of modules with quasi-length strictly less than $n$. In particular, all modules in the homogeneous tubes of the Auslander-Reiten quiver of $A$ cannot be in any simple-minded system.
Motivated by the relation between Schur algebra and the group algebra of a symmetric group, along with other similar examples in algebraic Lie theory, Min Fang and Steffen Koenig addressed some behaviour of the endomorphism algebra of a generator ove r a symmetric algebra, which they called gendo-symmetric algebra. Continuing this line of works, we classify in this article the representation-finite gendo-symmetric algebras that have at most one isomorphism class of indecomposable non-injective projective module. We also determine their almost { u}-stable derived equivalence classes in the sense of Wei Hu and Changchang Xi. It turns out that a representative can be chosen as the quotient of a representation-finite symmetric algebra by the socle of a certain indecomposable projective module.
We show that Auslander algebras have a unique tilting and cotilting module which is generated and cogenerated by a projective-injective; its endomorphism ring is called the projective quotient algebra. For any representation-finite algebra, we use th e projective quotient algebra to construct desingularizations of quiver Grassmannians, orbit closures in representation varieties, and their desingularizations. This generalizes results of Cerulli Irelli, Feigin and Reineke.
Let $mathbf{k}$ be an algebraically closed field of arbitrary characteristic, let $Lambda$ be a finite dimensional $mathbf{k}$-algebra and let $V$ be a $Lambda$-module with stable endomorphism ring isomorphic to $mathbf{k}$. If $Lambda$ is self-injec tive, then $V$ has a universal deformation ring $R(Lambda,V)$, which is a complete local commutative Noetherian $mathbf{k}$-algebra with residue field $mathbf{k}$. Moreover, if $Lambda$ is further a Frobenius $mathbf{k}$-algebra, then $R(Lambda,V)$ is stable under syzygies. We use these facts to determine the universal deformation rings of string $Lambda_{m,N}$-modules whose corresponding stable endomorphism ring is isomorphic to $mathbf{k}$, and which lie either in a connected component of the stable Auslander-Reiten quiver of $Lambda_{m,N}$ containing a module with endomorphism ring isomorphic to $mathbf{k}$ or in a periodic component containing only string $Lambda_{m,N}$-modules, where $mgeq 3$ and $Ngeq 1$ are integers, and $Lambda_{m,N}$ is a self-injective special biserial $mathbf{k}$-algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا