ﻻ يوجد ملخص باللغة العربية
We present a new method employing machine learning techniques for measuring astrophysical features by correcting systematics in IRAC high precision photometry using Random Forests. The main systematic in IRAC light curve data is position changes due to unavoidable telescope motions coupled with an intrapixel response function. We aim to use the large amount of publicly available calibration data for the single pixel used for this type of work (the sweet spot pixel) to make a fast, easy to use, accurate correction to science data. This correction on calibration data has the advantage of using an independent dataset instead of using the science data on itself, which has the disadvantage of including astrophysical variations. After focusing on feature engineering and hyperparameter optimization, we show that a boosted random forest model can reduce the data such that we measure the median of ten archival eclipse observations of XO-3b to be 1459 +- 200 parts per million. This is a comparable depth to the average of those in the literature done by seven different methods, however the spread in measurements is 30-100% larger than those literature values, depending on the reduction method. We also caution others attempting similar methods to check their results with the fiducial dataset of XO-3b as we were also able to find models providing initially great scores on their internal test datasets but whose results significantly underestimated the eclipse depth of that planet.
ASTERIA (Arcsecond Space Telescope Enabling Research In Astrophysics) is a 6U CubeSat space telescope (10 cm x 20 cm x 30 cm, 10 kg). ASTERIAs primary mission objective was demonstrating two key technologies for reducing systematic noise in photometr
Ground-based exoplanet surveys such as SuperWASP, HATNet and KELT have discovered close to two hundred transiting extrasolar planets in the past several years. The strategy of these surveys is to look at a large field of view and measure the brightne
Photometric and astrometric monitoring of directly imaged exoplanets will deliver unique insights into their rotational periods, the distribution of cloud structures, weather, and orbital parameters. As the host star is occulted by the coronagraph, a
We develop a new photometry algorithm that is optimized for $Spitzer$ time series in crowded fields and that is particularly adapted to faint and/or heavily blended targets. We apply this to the 170 targets from the 2015 $Spitzer$ microlensing campai
The dominant non-instrumental background source for space-based infrared observatories is the zo- diacal light. We present Spitzer Infrared Array Camera (IRAC) measurements of the zodiacal light at 3.6, 4.5, 5.8, and 8.0 {mu}m, taken as part of the i