ﻻ يوجد ملخص باللغة العربية
We introduce 1D and 2D models of a degenerate bosonic gas composed of ions with positive and negative charges (cations and anions). The system may exist in the mean-field condensate state, enabling the competition of the Coulomb coupling, contact repulsion, and kinetic energy of the particles, provided that their effective mass is reduced by means of a lattice potential. The model combines the Gross-Pitaevskii (GP) equations for the two-component wave function of the cations and anions, coupled to the Poisson equation for the electrostatic potential mediating the Coulomb coupling. The contact interaction in the GP system can be derived, in the Thomas-Fermi approximation, from a system of three GP equations, which includes the wave function of heavy neutral atoms. In the system with fully repulsive contact interactions, we construct stable spatially periodic patterns (density waves, DWs). The transition to DWs is identified by analysis of the modulational instability of a uniformly mixed neutral state. The DW pattern, which represents the systems ground state (GS), is predicted by a variational approximation. In 2D, a stable pattern is produced too, with a quasi-1D shape. The 1D system with contact self-attraction in each component produces bright solitons of three types: neutral ones, with fully mixed components; dipoles, with the components separated by the inter-species contact repulsion; and quadrupoles, with a layer of one component sandwiched between side lobes formed by the other. The transition from the neutral solitons to dipoles is accurately modeled analytically. A chart of the GSs of the different types (neutral solitons, dipoles, or quadrupoles) is produced. Different soliton species do not coexist as stable states. Collisions between traveling solitons are elastic for dipole-dipole pairs, while dipole-antidipole ones merge into stable quadrupoles via multiple collisions.
We show that the Josephson plasma frequency for a condensate in a double-well potential, whose dynamics is described by the Gross-Pitaevskii (GP) equation, can be obtained with great precision by means of the usual Bogoliubov approach, whereas the tw
We review the stochastic Gross-Pitaevskii approach for non-equilibrium finite temperature Bose gases, focussing on the formulation of Stoof; this method provides a unified description of condensed and thermal atoms, and can thus describe the physics
We examine on the static and dynamical properties of quantum knots in a Bose-Einstein condensate. In particular, we consider the Gross-Pitaevskii model and revise a technique to construct ab initio the condensate wave-function of a generic torus knot
We consider an effective scaling approach for the free expansion of a one-dimensional quantum wave packet, consisting in a self-similar evolution to be satisfied on average, i.e. by integrating over the coordinates. A direct comparison with the solut
Many of the static and dynamic properties of an atomic Bose-Einstein condensate (BEC) are usually studied by solving the mean-field Gross-Pitaevskii (GP) equation, which is a nonlinear partial differential equation for short-range atomic interaction.