ﻻ يوجد ملخص باللغة العربية
Pursuing realistic results according to human visual perception is the central concern in the image transformation tasks. Perceptual learning approaches like perceptual loss are empirically powerful for such tasks but they usually rely on the pre-trained classification network to provide features, which are not necessarily optimal in terms of visual perception of image transformation. In this paper, we argue that, among the features representation from the pre-trained classification network, only limited dimensions are related to human visual perception, while others are irrelevant, although both will affect the final image transformation results. Under such an assumption, we try to disentangle the perception-relevant dimensions from the representation through our proposed online contrastive learning. The resulted network includes the pre-training part and a feature selection layer, followed by the contrastive learning module, which utilizes the transformed results, target images, and task-oriented distorted images as the positive, negative, and anchor samples, respectively. The contrastive learning aims at activating the perception-relevant dimensions and suppressing the irrelevant ones by using the triplet loss, so that the original representation can be disentangled for better perceptual quality. Experiments on various image transformation tasks demonstrate the superiority of our framework, in terms of human visual perception, to the existing approaches using pre-trained networks and empirically designed losses.
We propose a self-supervised approach for learning representations of objects from monocular videos and demonstrate it is particularly useful in situated settings such as robotics. The main contributions of this paper are: 1) a self-supervising objec
Previous Online Knowledge Distillation (OKD) often carries out mutually exchanging probability distributions, but neglects the useful representational knowledge. We therefore propose Multi-view Contrastive Learning (MCL) for OKD to implicitly capture
Many speech processing methods based on deep learning require an automatic and differentiable audio metric for the loss function. The DPAM approach of Manocha et al. learns a full-reference metric trained directly on human judgments, and thus correla
Within the field of image and video recognition, the traditional approach is a dataset split into fixed training and test partitions. However, the labelling of the training set is time-consuming, especially as datasets grow in size and complexity. Fu
In this paper, we propose Parametric Contrastive Learning (PaCo) to tackle long-tailed recognition. Based on theoretical analysis, we observe supervised contrastive loss tends to bias on high-frequency classes and thus increases the difficulty of imb