ﻻ يوجد ملخص باللغة العربية
In the realm of motor control, artificial agents cannot match the performance of their biological counterparts. We thus explore a neural control architecture that is both biologically plausible, and capable of fully autonomous learning. The architecture consists of feedback controllers that learn to achieve a desired state by selecting the errors that should drive them. This selection happens through a family of differential Hebbian learning rules that, through interaction with the environment, can learn to control systems where the error responds monotonically to the control signal. We next show that in a more general case, neural reinforcement learning can be coupled with a feedback controller to reduce errors that arise non-monotonically from the control signal. The use of feedback control reduces the complexity of the reinforcement learning problem, because only a desired value must be learned, with the controller handling the details of how it is reached. This makes the function to be learned simpler, potentially allowing to learn more complex actions. We discuss how this approach could be extended to hierarchical architectures.
The broad concept of emergence is instrumental in various of the most challenging open scientific questions -- yet, few quantitative theories of what constitutes emergent phenomena have been proposed. This article introduces a formal theory of causal
A fundamental problem in neuroscience is to understand how sequences of action potentials (spikes) encode information about sensory signals and motor outputs. Although traditional theories of neural coding assume that information is conveyed by the t
Latency reduction of postsynaptic spikes is a well-known effect of Synaptic Time-Dependent Plasticity. We expand this notion for long postsynaptic spike trains, showing that, for a fixed input spike train, STDP reduces the number of postsynaptic spik
Brain plasticity refers to brains ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in
Synaptic plasticity is the capacity of a preexisting connection between two neurons to change in strength as a function of neural activity. Because synaptic plasticity is the major candidate mechanism for learning and memory, the elucidation of its c