ترغب بنشر مسار تعليمي؟ اضغط هنا

High sensitivity multi-axes rotation sensing using large momentum transfer point source atom interferometry

61   0   0.0 ( 0 )
 نشر من قبل Selim M. Shahriar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A point source interferometer (PSI) is a device where atoms are split and recombined by applying a temporal sequence of Raman pulses during the expansion of a cloud of cold atoms behaving approximately as a point source. The PSI can work as a sensitive multi-axes gyroscope that can automatically filter out the signal from accelerations. The phase shift arising from rotations is proportional to the momentum transferred to each atom from the Raman pulses. Therefore, by increasing the momentum transfer, it should be possibly to enhance the sensitivity of the PSI. Here, we investigate the degree of enhancement in sensitivity that could be achieved by augmenting the PSI with large momentum transfer (LMT) employing a sequence of many Raman pulses with alternating directions. Contrary to typical approaches used for describing a PSI, we employ a model under which the motion of the center of mass of each atom is described quantum mechanically. We show how increasing Doppler shifts lead to imperfections, thereby limiting the visibility of the signal fringes, and identify ways to suppress this effect by increasing the effective, two-photon Rabi frequencies of the Raman pulses. Taking into account the effect of spontaneous emission, we show that, for a given value of the one-photon Rabi frequency, there is an optimum value for the number of pulses employed, beyond which the net enhancement in sensitivity begins to decrease. For a one-photon Rabi frequency of 200 MHz, for example, the peak value of the factor of enhancement in sensitivity is ~39, for a momentum transfer that is ~69 times as large as that for a conventional PSI. We also find that this peak value scales as the one-photon Rabi frequency to the power of 4/5.

قيم البحث

اقرأ أيضاً

Point source atom interferometry is a promising approach for implementing robust, high-sensitivity, rotation sensors using cold atoms. However, its scale factor, i.e., the ratio between the interferometer signal and the actual rotation rate, depends on the initial conditions of the atomic cloud, which may drift in time and result in bias instability, particularly in compact devices with short interrogation times. We present two methods to stabilize the scale factor, one relying on a model-based correction which exploits correlations between multiple features of the interferometer output and works on a single-shot basis, and the other a self-calibrating method where a known bias rotation is applied to every other measurement, requiring no prior knowledge of the underlying model but reducing the sensor bandwidth by a factor of two. We demonstrate both schemes experimentally with complete suppression of scale factor drifts, maintaining the original rotation sensitivity and allowing for bias-free operation over several hours.
We show that light-pulse atom interferometry with atomic point sources and spatially resolved detection enables multi-axis (two rotation, one acceleration) precision inertial sensing at long interrogation times. Using this method, we demonstrate a li ght-pulse atom interferometer for Rb-87 with 1.4 cm peak wavepacket separation and a duration of 2T = 2.3 seconds. The inferred acceleration sensitivity of each shot is 6.7 * 10^(-12) g, which improves on previous limits by more than two orders of magnitude. We also measure the Earths rotation rate with a precision of 200 nrad/s.
113 - F. Anders , A. Idel , P. Feldmann 2020
Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers open up unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.
Point source atom interferometry (PSI) uses the velocity distribution in a cold atom cloud to simultaneously measure one axis of acceleration and two axes of rotation from the phase, orientation, and period of atomic interference fringe images. For p ractical applications in inertial sensing and precision measurement, it is important to be able to measure a wide range of system rotation rates, corresponding to interferograms with far less than one full interference fringe to very many fringes. The interferogram analysis techniques used previously for PSI are not sensitive to low rotation rates, which generates less one full interference fringe across the cloud, limiting the dynamic range of the instrument. We introduce an experimental method, new to atom interferometry and closely related to optical phase-shifting interferometry, that is effective in extracting rotation values from signals consisting of fractional fringes as well as many fringes without prior knowledge of the rotation rate. Our method uses four interferograms, each with a controlled Raman laser phase shift, to reconstruct the underlying atomic interferometer phase map.
121 - D. Savoie , M. Altorio , B. Fang 2018
Cold-atom inertial sensors target several applications in navigation, geoscience and tests of fundamental physics. Reaching high sampling rates and high inertial sensitivities, obtained with long interrogation times, represents a challenge for these applications. We report on the interleaved operation of a cold-atom gyroscope, where 3 atomic clouds are interrogated simultaneously in an atom interferometer featuring a 3.75 Hz sampling rate and an interrogation time of 801 ms. Interleaving improves the inertial sensitivity by efficiently averaging vibration noise, and allows us to perform dynamic rotation measurements in a so-far unexplored range. We demonstrate a stability of $3times 10^{-10}$ rad.s$^{-1}$, which competes with the best stability levels obtained with fiber-optics gyroscopes. Our work validates interleaving as a key concept for future atom-interferometry sensors probing time-varying signals, as in on-board navigation and gravity-gradiometry, searches for dark matter, or gravitational wave detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا