ترغب بنشر مسار تعليمي؟ اضغط هنا

Simultaneous compression and opacity data from time-series radiography with a Lagrangian marker

126   0   0.0 ( 0 )
 نشر من قبل Damian Swift
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-resolved radiography can be used to obtain absolute shock Hugoniot states by simultaneously measuring at least two mechanical parameters of the shock, and this technique is particularly suitable for one-dimensional converging shocks where a single experiment probes a range of pressures as the converging shock strengthens. However, at sufficiently high pressures, the shocked material becomes hot enough that the x-ray opacity falls significantly. If the system includes a Lagrangian marker, such that the mass within the marker is known, this additional information can be used to constrain the opacity as well as the Hugoniot state. In the limit that the opacity changes only on shock heating, and not significantly on subsequent isentropic compression, the opacity of shocked material can be determined uniquely. More generally, it is necessary to assume the form of the variation of opacity with isentropic compression, or to introduce multiple marker layers. Alternatively, assuming either the equation of state or the opacity, the presence of a marker layer in such experiments enables the non-assumed property to be deduced more accurately than from the radiographic density reconstruction alone. An example analysis is shown for measurements of a converging shock wave in polystyrene, at the National Ignition Facility.

قيم البحث

اقرأ أيضاً

In this study we show that standard well-known file compression programs (zlib, bzip2, etc.) are able to forecast real-world time series data well. The strength of our approach is its ability to use a set of data compression algorithms and automatica lly choose the best one of them during the process of forecasting. Besides, modern data-compressors are able to find many kinds of latent regularities using some methods of artificial intelligence (for example, some data-compressors are based on finding the smallest formal grammar that describes the time series). Thus, our approach makes it possible to apply some particular methods of artificial intelligence for time-series forecasting. As examples of the application of the proposed method, we made forecasts for the monthly T-index and the Kp-index time series using standard compressors. In both cases, we used the Mean Absolute Error (MAE) as an accuracy measure. For the monthly T-index time series, we made 18 forecasts beyond the available data for each month since January 2011 to July 2017. We show that, in comparison with the forecasts made by the Australian Bureau of Meteorology, our method more accurately predicts one value ahead. The Kp-index time series consists of 3-hour values ranging from 0 to 9. For each day from February 4, 2018 to March 28, 2018, we made forecasts for 24 values ahead. We compared our forecasts with the forecasts made by the Space Weather Prediction Center (SWPC). The results showed that the accuracy of our method is similar to the accuracy of the SWPCs method. As in the previous case, we also obtained more accurate one-step forecasts.
Convergent Cross-Mapping (CCM) has shown high potential to perform causal inference in the absence of models. We assess the strengths and weaknesses of the method by varying coupling strength and noise levels in coupled logistic maps. We find that CC M fails to infer accurate coupling strength and even causality direction in synchronized time-series and in the presence of intermediate coupling. We find that the presence of noise deterministically reduces the level of cross-mapping fidelity, while the convergence rate exhibits higher levels of robustness. Finally, we propose that controlled noise injections in intermediate-to-strongly coupled systems could enable more accurate causal inferences. Given the inherent noisy nature of real-world systems, our findings enable a more accurate evaluation of CCM applicability and advance suggestions on how to overcome its weaknesses.
48 - A. Semenov 2014
We present a new version 3.2 of the LanHEP software package. New features include UFO output, color sextet particles and new substutution techniques which allow to define new routines.
150 - Boris Ryabko 2018
Suppose there is a large file which should be transmitted (or stored) and there are several (say, m) admissible data-compressors. It seems natural to try all the compressors and then choose the best, i.e. the one that gives the shortest compressed fi le. Then transfer (or store) the index number of the best compressor (it requires log m bits) and the compressed file.The only problem is the time, which essentially increases due to the need to compress the file m times (in order to find the best compressor). We propose a method that encodes the file with the optimal compressor, but uses a relatively small additional time: the ratio of this extra time and the total time of calculation can be limited by an arbitrary positive constant. Generally speaking, in many situations it may be necessary find the best data compressor out of a given set, which is often done by comparing them empirically. One of the goals of this work is to turn such a selection process into a part of the data compression method, automating and optimizing it.
Time series data compression is emerging as an important problem with the growth in IoT devices and sensors. Due to the presence of noise in these datasets, lossy compression can often provide significant compression gains without impacting the perfo rmance of downstream applications. In this work, we propose an error-bounded lossy compressor, LFZip, for multivariate floating-point time series data that provides guaranteed reconstruction up to user-specified maximum absolute error. The compressor is based on the prediction-quantization-entropy coder framework and benefits from improved prediction using linear models and neural networks. We evaluate the compressor on several time series datasets where it outperforms the existing state-of-the-art error-bounded lossy compressors. The code and data are available at https://github.com/shubhamchandak94/LFZip
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا