ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxide Fermi liquid universality revealed by electron spectroscopy

102   0   0.0 ( 0 )
 نشر من قبل Masafumi Horio
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a combined soft x-ray and high-resolution vacuum-ultraviolet angle-resolved photoemission spectroscopy study of the electron-overdoped cuprate Pr$_{1.3-x}$La$_{0.7}$Ce$_{x}$CuO$_4$ (PLCCO). Demonstration of its highly two-dimensional band structure enabled precise determination of the in-plane self-energy dominated by electron-electron scattering. Through analysis of this self-energy and the Fermi-liquid cut-off energy scale, we find -- in contrast to hole-doped cuprates -- a momentum isotropic and comparatively weak electron correlation in PLCCO. Yet, the self-energies extracted from multiple oxide systems combine to demonstrate a logarithmic divergent relation between the quasiparticle scattering rate and mass. This constitutes a spectroscopic version of the Kadowaki-Woods relation with an important merit -- the demonstration of Fermi liquid quasiparticle lifetime and mass being set by a single energy scale.

قيم البحث

اقرأ أيضاً

The electron-phonon interaction is of central importance for the electrical and thermal properties of solids, and its influence on superconductivity, colossal magnetoresistance, and other many-body phenomena in correlated-electron materials is curren tly the subject of intense research. However, the non-local nature of the interactions between valence electrons and lattice ions, often compounded by a plethora of vibrational modes, present formidable challenges for attempts to experimentally control and theoretically describe the physical properties of complex materials. Here we report a Raman scattering study of the lattice dynamics in superlattices of the high-temperature superconductor $bf YBa_2 Cu_3 O_7$ and the colossal-magnetoresistance compound $bf La_{2/3}Ca_{1/3}MnO_{3}$ that suggests a new approach to this problem. We find that a rotational mode of the MnO$_6$ octahedra in $bf La_{2/3}Ca_{1/3}MnO_{3}$ experiences pronounced superconductivity-induced lineshape anomalies, which scale linearly with the thickness of the $bf YBa_2 Cu_3 O_7$ layers over a remarkably long range of several tens of nanometers. The transfer of the electron-phonon coupling between superlattice layers can be understood as a consequence of long-range Coulomb forces in conjunction with an orbital reconstruction at the interface. The superlattice geometry thus provides new opportunities for controlled modification of the electron-phonon interaction in complex materials.
There are two prerequisites for understanding high-temperature (high-T$_c$) superconductivity: identifying the pairing interaction and a correct description of the normal state from which superconductivity emerges. The nature of the normal state of i ron-pnictide superconductors, and the role played by correlations arising from partially screened interactions, are still under debate. Here we show that the normal state of carefully annealed electron-doped BaFe$_{2-x}$Co$_{x}$As$_2$ at low temperatures has all the hallmark properties of a local Fermi liquid, with a more incoherent state emerging at elevated temperatures, an identification made possible using bulk-sensitive optical spectroscopy with high frequency and temperature resolution. The frequency dependent scattering rate extracted from the optical conductivity deviates from the expected scaling $M_{2}(omega,T)propto(hbaromega)^{2}+(ppi k_{B}T)^{2}$ with $papprox$ 1.47 rather than $p$ = 2, indicative of the presence of residual elastic resonant scattering. Excellent agreement between the experimental results and theoretical modeling allows us to extract the characteristic Fermi liquid scale $T_{0}approx$ 1700 K. Our results show that the electron-doped iron-pnictides should be regarded as weakly correlated Fermi liquids with a weak mass enhancement resulting from residual electron-electron scattering from thermally excited quasi-particles.
Orbital degrees of freedom in condensed matters could play important roles in forming a variety of exotic electronic states by interacting with conduction electrons. In 4f electron systems, because of strong intra-atomic spin-orbit coupling, an orbit ally degenerate state inherently carries quadrupolar degrees of freedom. The present work has focussed on a purely quadrupole-active system PrIr2Zn20 showing superconductivity in the presence of an antiferroquadrupole order at TQ = 0.11 K. We observed non-Fermi liquid (NFL) behaviors emerging in the electrical resistivity and the 4f contribution to the specific heat, C_4f, in the paramagnetic state at T > TQ. Moreover, in magnetic fields below 6 T, all data set of the electrical resistivity and C_4f(T) are well scaled with characteristic temperatures T0s. This is the first observation of the NFL state in the nonmagnetic quadrupole-active system, whose origin is intrinsically different from that observed in the vicinity of the conventional quantum critical point. It implies possible formation of a quadrupole Kondo lattice resulting from hybridization between the quadrupoles and the conduction electrons. Below 0.13 K, the electrical resistivity and C_4f(T) exhibit anomalies as B approaches 5 T. This is the manifestation of a field-induced crossover toward a Fermi-liquid ground state in the quadrupole Kondo lattice.
We review recent progress in point contact spectroscopy (PCS) to extract spectroscopic information out of correlated electron materials, with the emphasis on non-superconducting states. PCS has been used to detect bosonic excitations in normal metals , where signatures (e.g. phonons) are usually less than 1$%$ of the measured conductance. In the superconducting state, point contact Andreev reflection (PCAR) has been widely used to study properties of the superconducting gap in various superconductors. In the last decade, there have been more and more experimental results suggesting that the point contact conductance could reveal new features associated with the unusual single electron dynamics in non-superconducting states, shedding a new light on exploring the nature of the competing phases in correlated materials. We will summarize the theories for point contact spectroscopy developed from different approaches and highlight these conceptual differences distinguishing point contact spectroscopy from tunneling-based probes. Moreover, we will show how the Schwinger-Kadanoff-Baym-Keldysh (SKBK) formalism together with the appropriate modeling of the nano-scale point contacts randomly distributed across the junction leads to the conclusion that the point contact conductance is proportional to the {it effective density of states}, a physical quantity that can be computed if the electron self energy is known. The experimental data on iron based superconductors and heavy fermion compounds will be analyzed in this framework. These recent developments have extended the applicability of point contact spectroscopy to correlated materials, which will help us achieve a deeper understanding of the single electron dynamics in strongly correlated systems.
We report a polarization-resolved Raman spectroscopy study of the orbital dependence of the quasiparticles properties in the prototypical multi-band Fermi liquid Srtextsubscript{2}RuOtextsubscript{4}. We show that the quasiparticle scattering rate di splays $omega^{2}$ dependence as expected for a Fermi liquid. Besides, we observe a clear polarization-dependence in the energy and temperature dependence of the quasiparticle scattering rate and mass, with the $d_{xz/yz}$ orbital derived quasiparticles showing significantly more robust Fermi liquid properties than the $d_{xy}$ orbital derived ones. The observed orbital dichotomy of the quasiparticles is consistent with the picture of Srtextsubscript{2}RuOtextsubscript{4} as a Hunds metal. Our study establishes Raman scattering as a powerful probe of Fermi liquid properties in correlated metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا