ﻻ يوجد ملخص باللغة العربية
We present an extension of the Hamiltonian of the two dimensional limit of the vibron model encompassing all possible interactions up to four-body operators. We apply this Hamiltonian to the modeling of the experimental bending spectrum of fourteen molecules. The bending degrees of freedom of the selected molecular species include all possible situations: linear, bent, and nonrigid equilibrium structures; demonstrating the flexibility of the algebraic approach, that allows for the consideration of utterly different physical cases with a general formalism and a single Hamiltonian. For each case, we compute predicted term values used to depict the quantum monodromy diagram, the Birge-Sponer plot, the participation ratio. We also show the bending energy functional obtained using the coherent --or intrinsic-- state formalism.
Concentrating on bosonic lattice systems, we ask whether and how Excited State Quantum Phase Transition (ESQPT) singularities occur in condensed matter systems with ground state QPTs. We study in particular the spectral singularities above the ground
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch
Background: Composed systems have became of great interest in the framework of the ground state quantum phase transitions (QPTs) and many of their properties have been studied in detail. However, in these systems the study of the so called excited-st
Using the Wherl entropy, we study the delocalization in phase-space of energy eigenstates in the vicinity of avoided crossing in the Lipkin-Meshkov-Glick model. These avoided crossing, appearing at intermediate energies in a certain parameter region
The presence of solvent tunes many properties of a molecule, such as its ground and excited state geometry, dipole moment, excitation energy, and absorption spectrum. Because the energy of the system will vary depending on the solvent configuration,