ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetries, graph properties, and quantum speedups

230   0   0.0 ( 0 )
 نشر من قبل Andrew M. Childs
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Aaronson and Ambainis (2009) and Chailloux (2018) showed that fully symmetric (partial) functions do not admit exponential quantum query speedups. This raises a natural question: how symmetric must a function be before it cannot exhibit a large quantum speedup? In this work, we prove that hypergraph symmetries in the adjacency matrix model allow at most a polynomial separation between randomized and quantum query complexities. We also show that, remarkably, permutation groups constructed out of these symmetries are essentially the only permutation groups that prevent super-polynomial quantum speedups. We prove this by fully characterizing the primitive permutation groups that allow super-polynomial quantum speedups. In contrast, in the adjacency list model for bounded-degree graphs (where graph symmetry is manifested differently), we exhibit a property testing problem that shows an exponential quantum speedup. These results resolve open questions posed by Ambainis, Childs, and Liu (2010) and Montanaro and de Wolf (2013).



قيم البحث

اقرأ أيضاً

Suppose a Boolean function $f$ is symmetric under a group action $G$ acting on the $n$ bits of the input. For which $G$ does this mean $f$ does not have an exponential quantum speedup? Is there a characterization of how rich $G$ must be before the fu nction $f$ cannot have enough structure for quantum algorithms to exploit? In this work, we make several steps towards understanding the group actions $G$ which are quantum intolerant in this way. We show that sufficiently transitive group actions do not allow a quantum speedup, and that a well-shuffling property of group actions -- which happens to be preserved by several natural transformations -- implies a lack of super-polynomial speedups for functions symmetric under the group action. Our techniques are motivated by a recent paper by Chailloux (2018), which deals with the case where $G=S_n$. Our main application is for graph symmetries: we show that any Boolean function $f$ defined on the adjacency matrix of a graph (and symmetric under relabeling the vertices of the graph) has a power $6$ relationship between its randomized and quantum query complexities, even if $f$ is a partial function. In particular, this means no graph property testing problems can have super-polynomial quantum speedups, settling an open problem of Ambainis, Childs, and Liu (2011).
Quantum computers can sometimes exponentially outperform classical ones, but only for problems with sufficient structure. While it is well known that query problems with full permutation symmetry can have at most polynomial quantum speedup -- even fo r partial functions -- it is unclear how far this condition must be relaxed to enable exponential speedup. In particular, it is natural to ask whether exponential speedup is possible for (partial) graph properties, in which the input describes a graph and the output can only depend on its isomorphism class. We show that the answer to this question depends strongly on the input model. In the adjacency matrix model, we prove that the bounded-error randomized query complexity $R$ of any graph property $mathcal{P}$ has $R(mathcal{P}) = O(Q(mathcal{P})^{6})$, where $Q$ is the bounded-error quantum query complexity. This negatively resolves an open question of Montanaro and de Wolf in the adjacency matrix model. More generally, we prove $R(mathcal{P}) = O(Q(mathcal{P})^{3l})$ for any $l$-uniform hypergraph property $mathcal{P}$ in the adjacency matrix model. In direct contrast, in the adjacency list model for bounded-degree graphs, we exhibit a promise problem that shows an exponential separation between the randomized and quantum query complexities.
Graph sparsification underlies a large number of algorithms, ranging from approximation algorithms for cut problems to solvers for linear systems in the graph Laplacian. In its strongest form, spectral sparsification reduces the number of edges to ne ar-linear in the number of nodes, while approximately preserving the cut and spectral structure of the graph. In this work we demonstrate a polynomial quantum speedup for spectral sparsification and many of its applications. In particular, we give a quantum algorithm that, given a weighted graph with $n$ nodes and $m$ edges, outputs a classical description of an $epsilon$-spectral sparsifier in sublinear time $tilde{O}(sqrt{mn}/epsilon)$. This contrasts with the optimal classical complexity $tilde{O}(m)$. We also prove that our quantum algorithm is optimal up to polylog-factors. The algorithm builds on a string of existing results on sparsification, graph spanners, quantum algorithms for shortest paths, and efficient constructions for $k$-wise independent random strings. Our algorithm implies a quantum speedup for solving Laplacian systems and for approximating a range of cut problems such as min cut and sparsest cut.
We present three new quantum algorithms in the quantum query model for textsc{graph-collision} problem: begin{itemize} item an algorithm based on tree decomposition that uses $Oleft(sqrt{n}t^{sfrac{1}{6}}right)$ queries where $t$ is the treewidth of the graph; item an algorithm constructed on a span program that improves a result by Gavinsky and Ito. The algorithm uses $O(sqrt{n}+sqrt{alpha^{**}})$ queries, where $alpha^{**}(G)$ is a graph parameter defined by [alpha^{**}(G):=min_{VCtext{-- vertex cover of}G}{max_{substack{Isubseteq VCItext{-- independent set}}}{sum_{vin I}{deg{v}}}};] item an algorithm for a subclass of circulant graphs that uses $O(sqrt{n})$ queries. end{itemize} We also present an example of a possibly difficult graph $G$ for which all the known graphs fail to solve graph collision in $O(sqrt{n} log^c n)$ queries.
The first separation between quantum polynomial time and classical bounded-error polynomial time was due to Bernstein and Vazirani in 1993. They first showed a O(1) vs. Omega(n) quantum-classical oracle separation based on the quantum Hadamard transf orm, and then showed how to amplify this into a n^{O(1)} time quantum algorithm and a n^{Omega(log n)} classical query lower bound. We generalize both aspects of this speedup. We show that a wide class of unitary circuits (which we call dispersing circuits) can be used in place of Hadamards to obtain a O(1) vs. Omega(n) separation. The class of dispersing circuits includes all quantum Fourier transforms (including over nonabelian groups) as well as nearly all sufficiently long random circuits. Second, we give a general method for amplifying quantum-classical separations that allows us to achieve a n^{O(1)} vs. n^{Omega(log n)} separation from any dispersing circuit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا