ترغب بنشر مسار تعليمي؟ اضغط هنا

Accelerated Deep Reinforcement Learning Based Load Shedding for Emergency Voltage Control

152   0   0.0 ( 0 )
 نشر من قبل Qiuhua Huang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Load shedding has been one of the most widely used and effective emergency control approaches against voltage instability. With increased uncertainties and rapidly changing operational conditions in power systems, existing methods have outstanding issues in terms of either speed, adaptiveness, or scalability. Deep reinforcement learning (DRL) was regarded and adopted as a promising approach for fast and adaptive grid stability control in recent years. However, existing DRL algorithms show two outstanding issues when being applied to power system control problems: 1) computational inefficiency that requires extensive training and tuning time; and 2) poor scalability making it difficult to scale to high dimensional control problems. To overcome these issues, an accelerated DRL algorithm named PARS was developed and tailored for power system voltage stability control via load shedding. PARS features high scalability and is easy to tune with only five main hyperparameters. The method was tested on both the IEEE 39-bus and IEEE 300-bus systems, and the latter is by far the largest scale for such a study. Test results show that, compared to other methods including model-predictive control (MPC) and proximal policy optimization(PPO) methods, PARS shows better computational efficiency (faster convergence), more robustness in learning, excellent scalability and generalization capability.



قيم البحث

اقرأ أيضاً

Emergency control, typically such as under-voltage load shedding (UVLS), is broadly used to grapple with low voltage and voltage instability issues in practical power systems under contingencies. However, existing emergency control schemes are rule-b ased and cannot be adaptively applied to uncertain and floating operating conditions. This paper proposes an adaptive UVLS algorithm for emergency control via deep reinforcement learning (DRL) and expert systems. We first construct dynamic components for picturing the power system operation as the environment. The transient voltage recovery criteria, which poses time-varying requirements to UVLS, is integrated into the states and reward function to advise the learning of deep neural networks. The proposed approach has no tuning issue of coefficients in reward functions, and this issue was regarded as a deficiency in the existing DRL-based algorithms. Extensive case studies illustrate that the proposed method outperforms the traditional UVLS relay in both the timeliness and efficacy for emergency control.
Under voltage load shedding has been considered as a standard and effective measure to recover the voltage stability of the electric power grid under emergency and severe conditions. However, this scheme usually trips a massive amount of load which c an be unnecessary and harmful to customers. Recently, deep reinforcement learning (RL) has been regarded and adopted as a promising approach that can significantly reduce the amount of load shedding. However, like most existing machine learning (ML)-based control techniques, RL control usually cannot guarantee the safety of the systems under control. In this paper, we introduce a novel safe RL method for emergency load shedding of power systems, that can enhance the safe voltage recovery of the electric power grid after experiencing faults. Unlike the standard RL method, the safe RL method has a reward function consisting of a Barrier function that goes to minus infinity when the system state goes to the safety bounds. Consequently, the optimal control policy can render the power system to avoid the safety bounds. This method is general and can be applied to other safety-critical control problems. Numerical simulations on the 39-bus IEEE benchmark is performed to demonstrate the effectiveness of the proposed safe RL emergency control, as well as its adaptive capability to faults not seen in the training.
The need for Enhanced Frequency Response (EFR) is expected to increase significantly in future low-carbon Great Britain (GB) power system. One way to provide EFR is to use power electronic compensators (PECs) for point-of-load voltage control (PVC) t o exploit the voltage dependence of loads. This paper investigates the techno-economic feasibility of such technology in future GB power system by quantifying the total EFR obtainable through deploying PVC in the urban domestic sector, the investment cost of the installment and the economic and environmental benefits of using PVC. The quantification is based on a stochastic domestic demand model and generic medium and low-voltage distribution networks for the urban areas of GB and a stochastic unit commitment (SUC) model with constraints for secure post-fault frequency evolution is used for the value assessment. Two future energy scenarios in the backdrop of 2030 with `smart and `non-smart control of electric vehicles and heat pumps, under different levels of penetration of battery energy storage system (BESS) are considered to assess the value of PEC, as well as the associated payback period. It is demonstrated that PVC could effectively complement BESS towards EFR provision in future GB power system.
This paper develops a model-free volt-VAR optimization (VVO) algorithm via multi-agent deep reinforcement learning (MADRL) in unbalanced distribution systems. This method is novel since we cast the VVO problem in unbalanced distribution networks to a n intelligent deep Q-network (DQN) framework, which avoids solving a specific optimization model directly when facing time-varying operating conditions of the systems. We consider statuses/ratios of switchable capacitors, voltage regulators, and smart inverters installed at distributed generators as the action variables of the DQN agents. A delicately designed reward function guides these agents to interact with the distribution system, in the direction of reinforcing voltage regulation and power loss reduction simultaneously. The forward-backward sweep method for radial three-phase distribution systems provides accurate power flow results within a few iterations to the DQN environment. Finally, the proposed multi-objective MADRL method realizes the dual goals for VVO. We test this algorithm on the unbalanced IEEE 13-bus and 123-bus systems. Numerical simulations validate the excellent performance of this method in voltage regulation and power loss reduction.
Developing effective strategies to rapidly support grid frequency while minimizing loss in case of severe contingencies is an important requirement in power systems. While distributed responsive load demands are commonly adopted for frequency regulat ion, it is difficult to achieve both rapid response and global accuracy in a practical and cost-effective manner. In this paper, the cyber-physical design of an Internet-of-Things (IoT) enabled system, called Grid Sense, is presented. Grid Sense utilizes a large number of distributed appliances for frequency emergency support. It features a local power loss $Delta P$ estimation approach for frequency emergency control based on coordinated edge intelligence. The specifically designed smart outlets of Grid Sense detect the frequency disturbance event locally using the parameters sent from the control center to estimate active power loss in the system and to make rapid and accurate switching decisions soon after a severe contingency. Based on a modified IEEE 24-bus system, numerical simulations and hardware experiments are conducted to demonstrate the frequency support performance of Grid Sense in the aspects of accuracy and speed. It is shown that Grid Sense equipped with its local $Delta P$-estimation frequency control approach can accurately and rapidly prevent the drop of frequency after a major power loss.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا