ترغب بنشر مسار تعليمي؟ اضغط هنا

GW190814: Gravitational Waves from the Coalescence of a 23 M$_odot$ Black Hole with a 2.6 M$_odot$ Compact Object

81   0   0.0 ( 0 )
 نشر من قبل LSC P&P Committee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of a compact binary coalescence involving a 22.2 - 24.3 $M_{odot}$ black hole and a compact object with a mass of 2.50 - 2.67 $M_{odot}$ (all measurements quoted at the 90$%$ credible level). The gravitational-wave signal, GW190814, was observed during LIGOs and Virgos third observing run on August 14, 2019 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg$^2$ at a distance of $241^{+41}_{-45}$ Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, $0.112^{+0.008}_{-0.009}$, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to $leq 0.07$. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1-23 Gpc$^{-3}$ yr$^{-1}$ for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models for the formation and mass distribution of compact-object binaries.



قيم البحث

اقرأ أيضاً

On June 20, 2020, the LIGO-Virgo collaboration announced the discovery of GW190814, a gravitational wave event originating from a binary system merger between a black hole of mass $M_1 = 23.2^{+1.1} _ {-1.0}M_odot$ and an unidentified object with a m ass of $M_2 = 2.59^{+0.08} _ {-0.09}M_odot$. This second object would be either the heaviest neutron star or lightest black hole observed to date. Here we investigate the possibility of the $sim 2.6M_odot$ object being a primordial black hole (PBH). We find that a primordial black hole explanation to GW190814 is unlikely as it is limited by the formation rate of the primary stellar progenitor and the observed merger rates of $mathcal{O}(20)M_odot$ massive black hole pairs.
Fallback in core-collapse supernovae is considered a major ingredient for explaining abundance anomalies in metal-poor stars and the natal kicks and spins of black holes (BHs). We present a first 3D simulation of BH formation and fallback in an abort ed neutrino-driven explosion of a $40$ solar mass zero-metallicity progenitor from collapse to shock breakout. We follow the phase up to BH formation using the relativistic CoCoNuT-FMT code. For the subsequent evolution to shock breakout we apply the moving-mesh code Arepo to core-collapse supernovae for the first time. Our simulation shows that despite early BH formation, neutrino-heated bubbles can survive for tens of seconds before being accreted, leaving them sufficient time to transfer part of their energy to sustain the shock wave as is propagates through the envelope. Although the initial net energy ($sim 2$ Bethe) of the neutrino-heated ejecta barely equals the binding energy of the envelope, $11,mathrm{M}_odot$ of hydrogen are still expelled with an energy of $0.23$ Bethe. We find no significant mixing and only a modest BH kick and spin, but speculate that stronger effects could occur for slightly more energetic explosions or progenitors with less tightly bound envelopes.
112 - Bin Liu , Dong Lai 2021
Merging compact black-hole (BH) binaries are likely to exist in the nuclear star clusters around supermassive BHs (SMBHs), such as Sgr A$^ast$. They may also form in the accretion disks of active galactic nuclei. Such compact binaries can emit gravit ational waves (GWs) in the low-frequency band (0.001-1 Hz) that are detectable by several planned space-borne GW observatories. We show that the orbital axis of the compact binary may experience significant variation due to the frame-dragging effect associated with the spin of the SMBH. The dynamical behavior of the orbital axis can be understood analytically as a resonance phenomenon. We show that rate of change of the binary orbital axis encodes the information on the spin of the SMBH. Therefore detecting GWs from compact binaries around SMBHs, particularly the modulation of the waveform associated with the variation of the binary orbital axis, can provide a new probe on the spins of SMBHs.
Rapid detection of compact binary coalescence (CBC) with a network of advanced gravitational-wave detectors will offer a unique opportunity for multi-messenger astronomy. Prompt detection alerts for the astronomical community might make it possible t o observe the onset of electromagnetic emission from (CBC). We demonstrate a computationally practical filtering strategy that could produce early-warning triggers before gravitational radiation from the final merger has arrived at the detectors.
We revisit the diffuse supernova neutrino background in light of recent systematic studies of stellar core collapse that reveal the quantitative impacts of the progenitor conditions on the collapse process. In general, the dependence of the progenito r on the core-collapse neutrino emission is not monotonic in progenitor initial mass, but we show that it can, at first order, be characterized by the core compactness. For the first time, we incorporate the detailed variations in the neutrino emission over the entire mass range $8$-$100 {rm M}_odot$, based on (i) a long-term simulation of the core collapse of a $8.8 {rm M}_odot$ O-Ne-Mg core progenitor, (ii) over 100 simulations of iron core collapse to neutron stars, and (iii) half a dozen simulations of core collapse to black holes (the failed channel). The fraction of massive stars that undergo the failed channel remains uncertain, but in view of recent simulations which reveal high compactness to be conducive to collapse to black holes, we characterize the failed fraction by considering a threshold compactness above which massive stars collapse to black holes and below which the final remnant is a neutron star. We predict that future detections of the diffuse supernova neutrino background may have the power to reveal this threshold compactness, if its value is relatively small as suggested by interpretations of several recent astronomical observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا