ﻻ يوجد ملخص باللغة العربية
The ground state and magnetization process of an exactly solved spin-$1/2$ Ising-Heisenberg orthogonal-dimer chain with two different gyromagnetic factors of the Ising and Heisenberg spins are investigated in detail. It is shown that the investigated quantum spin chain exhibits up to seven possible ground states depending on a mutual interplay of the magnetic field, intra- and inter-dimer coupling constants. More specifically, the frustrated and modulated quantum antiferromagnetic phases are responsible in zero-temperature magnetization curves for a zero magnetization plateau. The intermediate 1/11- and 5/11-plateaus emerge due to the frustrated and modulated quantum ferrimagnetic phases, while the intermediate 9/11- and 10/11-plateaus can be attributed to the quantum and classical ferrimagnetic phases. It is conjectured that the magnetization plateau experimentally observed in a high-field magnetization curve of 3$d$-4$f$ heterobimetallic coordination polymer [{Dy(hfac)$_2$(CH$_3$OH)}$_2${Cu(dmg)(Hdmg)}$_2$]$_n$ (H$_2$dmg $=$ dimethylglyoxime; Hhfac $=$ 1,1,1,5,5,5-hexafluoropentane-2,4-dione) could be attributed to the classical and quantum ferrimagnetic phases.
Highly frustrated spin systems such as the kagome lattice (KL) are a treasure trove of new quantum states with large entanglements. We thus study the spin-$frac{1}{2}$ Heisenberg model on a kagome-strip chain (KSC), which is one-dimensional KL, using
Ferroelectric Ising chain magnet Ca$_3$Co$_{2-x}$Mn$_x$O$_6$ ($xsimeq$0.96) was studied in magnetic fields up to 33 T. Magnetization and neutron scattering measurements reveal successive metamagnetic transitions from the zero-field $uparrow uparrow d
Magnetic and magnetocaloric properties of a spin-1 Heisenberg diamond cluster with two different coupling constants are investigated with the help of an exact diagonalization based on the Kambes method, which employs a local conservation of composite
The magnetization process of the spin-1 Heisenberg dimer model with axial and rhombic single-ion anisotropy terms is particularly investigated in connection with recent experimental high-field measurements performed on the single-crystal sample of th
The electronic and magnetic structure, including the Heisenberg model exchange interaction parameters, was explored for the recently proposed novel cuprate Cu$_2$F$_5$. Using the DFT+U calculation, it is shown that the compound is formed by two types