ترغب بنشر مسار تعليمي؟ اضغط هنا

Collisional polarization of molecular ions: a signpost of ambipolar diffusion

109   0   0.0 ( 0 )
 نشر من قبل Boy Lankhaar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic fields play a role in the dynamics of many astrophysical processes, but they are hard to detect. In a partially ionized plasma, a magnetic field works directly on the ionized medium but not on the neutral medium, which gives rise to a velocity drift between them: ambipolar diffusion. This process is suggested to be important in the process of star formation, but has never been directly observed. We introduce a method that could be used to detect ambipolar diffusion and the magnetic field that gives rise to it, where we exploit the velocity drift between the charged and neutral medium. By using a representative classical model of the collision dynamics, we show that molecular ions partially align themselves when a velocity drift is present between the molecular ion and its main collision partner H2. We demonstrate that ambipolar diffusion potently aligns molecular ions in regions denser than their critical density, which subsequently leads to partially polarized emission from these species. We include a model for HCO+ and show that collisional polarization could be detectable for the ambipolar drifts predicted by numerical simulations of the inner protostellar disk regions. The polarization vectors are aligned perpendicular to the magnetic field direction projected on the plane of the sky.



قيم البحث

اقرأ أيضاً

We propose a mechanism for efficient heating of the solar chromosphere, based on non-ideal plasma effects. Three ingredients are needed for the work of this mechanism: (1) presence of neutral atoms; (2) presence of a non-potential magnetic field; (3) decrease of the collisional coupling of the plasma. Due to decrease of collisional coupling, a net relative motion appears between the neutral and ionized components, usually referred to as ambipolar diffusion. This results in a significant enhancement of current dissipation as compared to the classical MHD case. We propose that the current dissipation in this situation is able to provide enough energy to heat the chromosphere by several kK on the time scale of minutes, or even seconds. In this paper, we show that this energy supply might be sufficient to balance the radiative energy losses of the chromosphere.
79 - R. Mignon-Risse 2021
(Abridged) Context. Massive stars form in magnetized and turbulent environments, and are often located in stellar clusters. Their accretion mechanism, as well as the origin of their systems stellar multiplicity are poorly understood. Aims. We study t he influence of both magnetic fields and turbulence on the accretion mechanism of massive protostars and their multiplicity. Methods. We present a series of four Radiation-MHD simulations of the collapse of a massive magnetized, turbulent core of 100 $M_odot$ with the AMR code Ramses, including a hybrid radiative transfer method for stellar irradiation and ambipolar diffusion. We vary the Mach and Alfvenic Mach numbers to probe sub- and superalfvenic turbulence as well as sub- and supersonic turbulence regimes. Results. Subalfvenic turbulence leads to single stellar systems while superalfvenic turbulence leads to binary formation from disk fragmentation following spiral arm collision, with mass ratios of 1.1-1.6. In those runs, infalling gas reaches the individual disks via a transient circumbinary structure. Magnetically-regulated, thermally-dominated (plasma beta $beta>1$), Keplerian disks form in all runs, with sizes 100-200 AU and masses 1-8 $M_odot$. The disks around primary and secondary sink particles share similar properties. We observe higher accretion rates onto the secondary stars than onto their primary star companion. The primary disk orientation is found to be set by the initial angular momentum carried by turbulence. Conclusions. Small (300 AU) massive protostellar disks as those frequently observed nowadays can only be reproduced so far in the presence of (moderate) magnetic fields with ambipolar diffusion, even in a turbulent medium. The interplay between magnetic fields and turbulence sets the multiplicity of stellar clusters. A plasma beta $beta>1$ is a good indicator of streamers and disks.
133 - S. Reissl , D. Seifried , S. Wolf 2017
Aims: In this paper we present a case study to investigate conditions necessary to detect a characteristic magnetic field substructure embedded in a large-scale field. A helical magnetic field with a surrounding hourglass shaped field is expected fro m theoretical predictions and self-consistent magnetohydrodynamical (MHD) simulations to be present in the specific case of protostellar outflows. Hence, such an outflow environment is the perfect for our study. Methodes: We present synthetic polarisation maps in the infrared and millimeter regime of protostellar outflows performed with the newly developed RT and polarisation code POLARIS. The code, as the first, includes a self-consistent description of various alignement mechanism like the imperfect Davis-Greenstein (IDG) and the radiative torque (RAT) alignment. We investigate for which effects the grain size distribution, and applied alignement mechanism have. Results: We find that the IDG mechanism cannot produce any measurable polarization degree (< 1 %) whereas RAT alignment produced polarization degrees of a few 1 %. Furthermore, we developed a method to identify the origin of the polarization. We show that the helical magnetic field in the outflow can only be observed close to the outflow axis and at its tip, whereas in the surrounding regions the hourglass field in the foreground dominates the polarization. Furthermore, the polarization degree in the outflow lobe is lower than in the surroundings in agreement with observations. We also find that the orientation of the polarization vector flips around a few 100 micron due to the transition from dichroic extinction to thermal re-emission. Hence, in order to avoid ambiguities when interpreting polarization data, we suggest to observed in the far-infrared and mm regime. Finally, we show that with ALMA it is possible to observe the polarization emerging from protostellar outflows.
The temperature of the gas in molecular clouds is a key determinant of the characteristic mass of star formation. Ambipolar diffusion (AD) is considered one of the most important heating mechanisms in weakly ionized molecular clouds. In this work, we study the AD heating rate using 2-fluid turbulence simulations and compare it with the overall heating rate due to turbulent dissipation. We find that for observed molecular clouds, which typically have Alfven Mach numbers of ~1 (Crutcher 1999) and AD Reynolds numbers of ~20 (McKee et al. 2010), about 70% of the total turbulent dissipation is in the form of AD heating. AD has an important effect on the length scale where energy is dissipated: when AD heating is strong, most of the energy in the cascade is removed by ion-neutral drift, with a comparatively small amount of energy making it down to small scales. We derive a relation for the AD heating rate that describes the results of our simulations to within a factor of two. Turbulent dissipation, including AD heating, is generally less important that cosmic-ray heating in molecular clouds, although there is substantial scatter in both.
The filamentary structure of the molecular interstellar medium and the potential link of this morphology to star formation have been brought into focus recently by high resolution observational surveys. An especially puzzling matter is that local int erstellar filaments appear to have the same thickness, independent of their column density. This requires a theoretical understanding of their formation process and the physics that governs their evolution. In this work we explore a scenario in which filaments are dissipative structures of the large-scale interstellar turbulence cascade and ion-neutral friction (also called ambipolar diffusion) is affecting their sizes by preventing small-scale compressions. We employ high-resolution, 3D MHD simulations, performed with the grid code RAMSES, to investigate non-ideal MHD turbulence as a filament formation mechanism. We focus the analysis on the mass and thickness distributions of the resulting filamentary structures. Simulations of both driven and decaying MHD turbulence show that the morphologies of the density and the magnetic field are different when ambipolar diffusion is included in the models. In particular, the densest structures are broader and more massive as an effect of ion-neutral friction and the power spectra of both the velocity and the density steepen at a smaller wavenumber. The comparison between ideal and non-ideal MHD simulations shows that ambipolar diffusion causes a shift of the filament thickness distribution towards higher values. However, none of the distributions exhibit the pronounced peak found in the observed local filaments. Limitations in dynamical range and the absence of self-gravity in these numerical experiments do not allow us to conclude at this time whether this is due to the different filament selection or due to the physics inherent of the filament formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا