ﻻ يوجد ملخص باللغة العربية
A new physical phenomenon is identified: volumetric stellar emission into gravitationally bound orbits of weakly coupled particles such as axions, moduli, hidden photons, and neutrinos. While only a tiny fraction of the instantaneous luminosity of a star (the vast majority of the emission is into relativistic modes), the continual injection of these particles into a small part of phase space causes them to accumulate over astrophysically long time scales, forming what I call a stellar basin, in analogy with the geologic kind. The energy density of the Solar basin will surpass that of the relativistic Solar flux at Earths location after only a million years, for any sufficiently long-lived particle produced through an emission process whose matrix elements are unsuppressed at low momentum. This observation has immediate and striking consequences for direct detection experiments---including new limits on axion parameter space independent of dark matter assumptions---and may also increase the prospects for indirect detection of weakly interacting particles around compact stars.
We calculate the production of ultra-light axion-like particles (ALPs) in a nearby supernova progenitor. Once produced, ALPs escape from the star and a part of them is converted into photons during propagation in the Galactic magnetic field. It is fo
There are a number of observational hints from astrophysics which point to the existence of stellar energy losses beyond the ones accounted for by neutrino emission. These excessive energy losses may be explained by the existence of a new sub-keV mas
Axion-like particles (ALPs), a class of pseudoscalars common to many extensions of the Standard Model, have the capacity to drain energy from the interiors of stars. Consequently, stellar evolution can be used to derive many constraints on ALPs. We s
Hot Jupiters provide valuable natural laboratories for studying potential contributions of high-energy radiation to prebiotic synthesis in the atmospheres of exoplanets. In this fourth paper of the MOVES (Multiwavelength Observations of an eVaporatin
Over the past two decades scientists have achieved a significant improvement of our understanding of the transport of energetic particles across a mean magnetic field. Due to test-particle simulations as well as powerful non-linear analytical tools o