ﻻ يوجد ملخص باللغة العربية
By new advancements in vehicle manufacturing; evaluation of vehicle quality assurance has got a more critical issue. Today noise and vibration generated inside and outside the vehicles are more important factors for customers than previous. So far several researchers have focused on interior noise transfer path analysis and the results have been published in related papers but each method has its own limitations. In present work, the vibration transfer path analysis and vibration path ranking of a car interior has been performed. As interior vibration is a source of structural borne noise problem, thus the results of this research can be used to present the structural borne noise state in a vehicle. The method proposed in this paper, in opposite of the earlier methods, do not need to disassemble the power train from the chassis. The procedure shows a good ability of vibration path ranking in a vehicle and is an effective tool to diagnose the vibration problem inside the vehicle. The simulated vibration spectrums in different speeds of the engine have a good compliance with the tested results however some incompatibilities exist and have been discussed in details. The simulated results show the strength of the method in engine mount optimization.
In autonomous driving, using a variety of sensors to recognize preceding vehicles in middle and long distance is helpful for improving driving performance and developing various functions. However, if only LiDAR or camera is used in the recognition s
Model predictive control (MPC) is widely used for path tracking of autonomous vehicles due to its ability to handle various types of constraints. However, a considerable predictive error exists because of the error of mathematics model or the model l
In cellular-connected unmanned aerial vehicle (UAV) network, a minimization problem on the weighted sum of time cost and expected outage duration is considered. Taking advantage of UAVs adjustable mobility, an intelligent UAV navigation approach is f
This paper proposes a life-long adaptive path tracking policy learning method for autonomous vehicles that can self-evolve and self-adapt with multi-task knowledge. Firstly, the proposed method can learn a model-free control policy for path tracking
Autonomous Underwater Vehicle-Manipulator systems (AUVMS) is a new tool for ocean exploration, the AUVMS path planning problem is addressed in this paper. AUVMS is a high dimension system with a large difference in inertia distribution, also it works