ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultra-fast amplitude modulation of mid-IR free-space beams at room-temperature

100   0   0.0 ( 0 )
 نشر من قبل Stefano Pirotta
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Applications relying on mid-infrared radiation (Mid-IR, $lambdasim$ 3-30 $mu$m) have progressed at a very rapid pace in recent years, stimulated by scientific and technological breakthroughs. Mid-IR cameras have propelled the field of thermal imaging. And the invention of the quantum cascade laser (QCL) has been a milestone, making compact, semiconductor-based mid-IR lasers available to a vast range of applications. All the recent breakthrough advances stemmed from the development of a transformative technology. In addition to the generation and detection of light, a key functionality for most photonics systems is the electrical control of the amplitude and/or phase of an optical beam at ultra-fast rates (GHz or more). However, standalone, broadband, integrated modulators are missing from the toolbox of present mid-IR photonics integrated circuits and systems developers. We have developed a free-space amplitude modulator for mid-IR radiation ($lambdasim$ 10 $mu$m) that can operate up to at least 1.5 GHz (-3dB cut-off at $sim$ 750 MHz) and at room-temperature. The device relies on a semiconductor hetero-structure enclosed in a judiciously designed metal-metal optical resonator. At zero bias, it operates in the strong light-matter coupling regime up to 300K. By applying an appropriate bias, the device transitions to the weak coupling regime. The large change in reflectivity due to the disappearance of the polaritonic states is exploited to modulate the intensity of a mid-IR continuous-wave laser up to speeds of more than 1.5 GHz.

قيم البحث

اقرأ أيضاً

A single photon source with high repeatability and low uncertainties is the key element for few-photon metrology based on photon numbers. While low photon number fluctuations and high repeatability are important figures for qualification as a standar d light source, these characteristics are limited in single photon emitters by some malicious phenomena like blinking or internal relaxations to varying degrees in different materials. This study seeks to characterize photon number fluctuations and repeatability for radiometry applications at room temperature. For generality in this study, we collected photon statistics data with various single photon emitters of $g^{(2)}(0) < 1$ at low excitation power and room temperature in three material platforms: silicon vacancy in diamond, defects in GaN, and vacancy in hBN. We found common factors related with the relaxation times of the internal states that indirectly affect photon number stability. We observed a high stability of photon number with defects in GaN due to faster relaxations compared with vacancies in hBN, which on the other hand produced high rates ($> 10^6$) of photons per second. Finally, we demonstrate repeatable radiant flux measurements of a bright hBN single photon emitter for a wide radiant flux range from a few tens of femtowatts to one picowatt.
A system of N two-level atoms cooperatively interacting with a photonic field can be described as a single giant atom coupled to the field with interaction strength ~N^0.5. This enhancement, known as Dicke cooperativity in quantum optics, has recentl y become an indispensable element in quantum information technology based on strong light-matter coupling. Here, we extend the coupling beyond the standard light-matter interaction paradigm, emulating Dicke cooperativity in a terahertz metasurface with N meta-atoms. Cooperative enhancement manifested in the form of matter-matter coupling, through the hybridization of localized surface plasmon resonance in individual meta-atoms and surface lattice resonance due to the periodic array of the meta-atoms. By varying the lattice constant of the array, we observe a clear anticrossing behavior, a signature of strong coupling. Furthermore, through engineering of the capacitive split-gap in the meta-atoms, the coupling rate was cooperatively enhanced into the ultrastrong coupling regime by a factor of N^0.5. This room-temperature technology serves as a convenient quantum emulator of the dynamics of a qubit with a giant dipole moment coherently driven by a single bosonic field.
Portable mid-infrared (mid-IR) spectroscopy and sensing applications require widely tunable, narrow linewidth, chip-scale, single-mode sources without sacrificing significant output power. However, no such lasers have been demonstrated beyond 3 $mu$m due to the challenge of building tunable, high quality-factor (Q) on-chip cavities. We demonstrate a tunable, single-mode mid-IR laser at 3.4 $mu$m using a high-Q silicon microring cavity with integrated heaters and a multi-mode Interband Cascade Laser (ICL). We show that the multiple longitudinal modes of an ICL collapse into a single frequency via self-injection locking with an output power of 0.4 mW and achieve an oxide-clad high confinement waveguide microresonator with a loaded Q of $2.8times 10^5$. Using integrated microheaters, our laser exhibits a wide tuning range of 54 nm at 3.4 $mu$m with 3 dB output power variation. We further measure an upper-bound effective linewidth of 9.1 MHz from the locked laser using a scanning Fabry-Perot interferometer. Our design of a single-mode laser based on a tunable high-Q microresonator can be expanded to quantum-cascade lasers at higher wavelengths and lead to the development of compact, portable, high-performance mid-IR sensors for spectroscopic and sensing applications.
The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled c onditions so far. And its real potential lies at the practical applications in the field of remote sensing. We have established a 120-meter long free-space link between the rooftops of two buildings and show that both the rotation speed and the rotational symmetry of objects can be identified from the detected rotational Doppler frequency shift signal at photon count level. Effects of possible slight misalignments and atmospheric turbulences are quantitatively analyzed in terms of mode power spreading to the adjacent modes as well as the transfer of rotational frequency shifts. Moreover, our results demonstrate that with the preknowledge of the objects rotational symmetry one may always deduce the rotation speed no matter how strong the coupling to neighboring modes is. Without any information of the rotating object, the deduction of the objects symmetry and rotational speed may still be obtained as long as the mode spreading efficiency does not exceed 50 %. Our work supports the feasibility of a practical sensor to remotely detect both the speed and symmetry of rotating bodies.
Diffraction-free optical beams propagate freely without change in shape and scale. Monochromatic beams that avoid diffractive spreading require two-dimensional transverse profiles, and there are no corresponding solutions for profiles restricted to o ne transverse dimension. Here, we demonstrate that the temporal degree of freedom can be exploited to efficiently synthesize one-dimensional pulsed optical sheets that propagate self-similarly in free space. By introducing programmable conical (hyperbolic, parabolic, or elliptical) spectral correlations between the beams spatio-temporal degrees of freedom, a continuum of families of axially invariant pulsed localized beams is generated. The spectral loci of such beams are the reduced-dimensionality trajectories at the intersection of the light-cone with spatio-temporal spectral planes. Far from being exceptional, self-similar axial propagation is a generic feature of fields whose spatial and temporal degrees of freedom are tightly correlated. These one-dimensional `space-time beams can be useful in optical sheet microscopy, nonlinear spectroscopy, and non-contact measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا