ﻻ يوجد ملخص باللغة العربية
Applications relying on mid-infrared radiation (Mid-IR, $lambdasim$ 3-30 $mu$m) have progressed at a very rapid pace in recent years, stimulated by scientific and technological breakthroughs. Mid-IR cameras have propelled the field of thermal imaging. And the invention of the quantum cascade laser (QCL) has been a milestone, making compact, semiconductor-based mid-IR lasers available to a vast range of applications. All the recent breakthrough advances stemmed from the development of a transformative technology. In addition to the generation and detection of light, a key functionality for most photonics systems is the electrical control of the amplitude and/or phase of an optical beam at ultra-fast rates (GHz or more). However, standalone, broadband, integrated modulators are missing from the toolbox of present mid-IR photonics integrated circuits and systems developers. We have developed a free-space amplitude modulator for mid-IR radiation ($lambdasim$ 10 $mu$m) that can operate up to at least 1.5 GHz (-3dB cut-off at $sim$ 750 MHz) and at room-temperature. The device relies on a semiconductor hetero-structure enclosed in a judiciously designed metal-metal optical resonator. At zero bias, it operates in the strong light-matter coupling regime up to 300K. By applying an appropriate bias, the device transitions to the weak coupling regime. The large change in reflectivity due to the disappearance of the polaritonic states is exploited to modulate the intensity of a mid-IR continuous-wave laser up to speeds of more than 1.5 GHz.
A single photon source with high repeatability and low uncertainties is the key element for few-photon metrology based on photon numbers. While low photon number fluctuations and high repeatability are important figures for qualification as a standar
A system of N two-level atoms cooperatively interacting with a photonic field can be described as a single giant atom coupled to the field with interaction strength ~N^0.5. This enhancement, known as Dicke cooperativity in quantum optics, has recentl
Portable mid-infrared (mid-IR) spectroscopy and sensing applications require widely tunable, narrow linewidth, chip-scale, single-mode sources without sacrificing significant output power. However, no such lasers have been demonstrated beyond 3 $mu$m
The rotational Doppler effect associated with lights orbital angular momentum (OAM) has been found as a powerful tool to detect rotating bodies. However, this method was only demonstrated experimentally on the laboratory scale under well controlled c
Diffraction-free optical beams propagate freely without change in shape and scale. Monochromatic beams that avoid diffractive spreading require two-dimensional transverse profiles, and there are no corresponding solutions for profiles restricted to o