ﻻ يوجد ملخص باللغة العربية
We present a dark matter model to explain the excess events in the electron recoil data recently reported by the Xenon1T experiment. In our model, dark matter $chi$ annihilates into a pair of on-shell particles $phi$ which subsequently decay into $psi psi$ final state; $psi$ interacts with electron to generate the observed excess events. Due to the mass hierarchy, the velocity of $psi$ can be rather large and can have an extended distribution, which provides a good fit to the electron recoil energy spectrum. We estimated the flux of $psi$ from dark matter annihilations in the galaxy and further determined the interaction cross section which is sizable but small enough to allow $psi$ to penetrate the rocks to reach the underground labs.
The cosmic electron energy spectrum recently observed by the DAMPE experiment exhibits two interesting features, including a break around 0.9 TeV and a sharp resonance near 1.4 TeV. In this analysis, we propose a dark matter explanation to both exoti
We discuss how to consistently use Effective Field Theories (EFTs) to set universal bounds on heavy-mediator Dark Matter at colliders, without prejudice on the model underlying a given effective interaction. We illustrate the method for a Majorana fe
Very recently, the Xenon1T collaboration has reported an intriguing electron recoil excess, which may imply for light dark matter. In order to interpret this anomaly, we propose the atmospheric dark matter (ADM) from the inelastic collision of cosmic
We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an $s$-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on t
We point out that a non-relativistic $sim 2 $ GeV dark matter (DM) which interacts with visible matter through higher dimensional Rayleigh operators could explain the excess of electron recoil events recently observed by the Xenon1T collaboration. A