ترغب بنشر مسار تعليمي؟ اضغط هنا

A phase-integral perspective on alpha-decay

58   0   0.0 ( 0 )
 نشر من قبل Giampiero Esposito Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper applies the phase-integral method to the stationary theory of alpha-decay. The rigorous form of the connection formulae, and their one-directional nature that was not widely known in the physical literature, are applied. The condition for obtaining s-wave metastable states affects the stationary state at large distance from the nucleus, which is dominated by the cosine of the phase integral minus (pi over 4). Accurate predictions for the lowest s-wave metastable state and mean life of the radioactive nucleus are obtained in the case of Uranium. The final part of the paper describes the phase-integral algorithm for evaluating stationary states by means of a suitable choice of freely specifiable base function. Within this framework, an original approximate formula for the phase integrand with arbitrary values of the angular momentum quantum number is obtained.



قيم البحث

اقرأ أيضاً

144 - L. Castellani , R. Catenacci , 2014
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical appro ach to supergravity and its variational principle are reformulated and clarified in this language. Central in our analysis is the Poincare dual of a bosonic manifold embedded into a supermanifold. Finally, using integral forms we provide a proof of Gates so-called Ectoplasmic Integration Theorem, relating superfield actions to component actions.
We study shift relations between Feynman integrals via the Mellin transform through parametric annihilation operators. These contain the momentum space IBP relations, which are well-known in the physics literature. Applying a result of Loeser and Sab bah, we conclude that the number of master integrals is computed by the Euler characteristic of the Lee-Pomeransky polynomial. We illustrate techniques to compute this Euler characteristic in various examples and compare it with numbers of master integrals obtained in previous works.
247 - Marcin Kisielowski 2013
We have introduced Faddeev-Niemi type variables for static SU(3) Yang-Mills theory. The variables suggest that a non-linear sigma model whose sigma fields take values in SU(3)/(U(1)xU(1)) and SU(3)/(SU(2)xU(1)) may be relevant to infrared limit of th e theory. Shabanov showed that the energy functional of the non-linear sigma model is bounded from below by certain functional. However, the Shabanovs functional is not homotopy invariant, and its value can be an arbitrary real number -- therefore it is not a topological charge. Since the third homotopy group of SU(3)/(U(1)xU(1)) is isomorphic to the group of integer numbers, there is a non-trivial topological charge (given by the isomorphism). We apply Novikovs procedure to obtain integral expression for this charge. The resulting formula is analogous to the Whiteheads realization of the Hopf invariant.
We consider the $U(1)$ Chern-Simons gauge theory defined in a general closed oriented 3-manifold $M$; the functional integration is used to compute the normalized partition function and the expectation values of the link holonomies. The nonperturbati ve path-integral is defined in the space of the gauge orbits of the connections which belong to the various inequivalent $U(1)$ principal bundles over $M$; the different sectors of the configuration space are labelled by the elements of the first homology group of $M$ and are characterized by appropriate background connections. The gauge orbits of flat connections, whose classification is also based on the homology group, control the extent of the nonperturbative contributions to the mean values. The functional integration is achieved in any 3-manifold $M$, and the corresponding path-integral invariants turn out to be strictly related with the abelian Reshetikhin-Turaev surgery invariants.
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quant um matter, with particular reference to the context of analogue gravity. In order to take into account the constraints occurring in the model, we adopt the Faddeev-Jackiw approach to constrained quantization in the path integral formalism. In particular we demonstrate that the propagator obtained with the Faddeev-Jackiw approach is equivalent to the one which, in the framework of Dirac canonical quantization for constrained systems, can be directly computed as the vacuum expectation value of the time ordered product of the fields. Our analysis also provides an explicit example of quantization of the electromagnetic field in a covariant gauge and coupled with the polarization field, which is a novel contribution to the literature on the Faddeev-Jackiw procedure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا