ﻻ يوجد ملخص باللغة العربية
The Jiangmen Underground Neutrino Observatory~(JUNO) features a 20~kt multi-purpose underground liquid scintillator sphere as its main detector. Some of JUNOs features make it an excellent experiment for $^8$B solar neutrino measurements, such as its low-energy threshold, its high energy resolution compared to water Cherenkov detectors, and its much large target mass compared to previous liquid scintillator detectors. In this paper we present a comprehensive assessment of JUNOs potential for detecting $^8$B solar neutrinos via the neutrino-electron elastic scattering process. A reduced 2~MeV threshold on the recoil electron energy is found to be achievable assuming the intrinsic radioactive background $^{238}$U and $^{232}$Th in the liquid scintillator can be controlled to 10$^{-17}$~g/g. With ten years of data taking, about 60,000 signal and 30,000 background events are expected. This large sample will enable an examination of the distortion of the recoil electron spectrum that is dominated by the neutrino flavor transformation in the dense solar matter, which will shed new light on the tension between the measured electron spectra and the predictions of the standard three-flavor neutrino oscillation framework. If $Delta m^{2}_{21}=4.8times10^{-5}~(7.5times10^{-5})$~eV$^{2}$, JUNO can provide evidence of neutrino oscillation in the Earth at the about 3$sigma$~(2$sigma$) level by measuring the non-zero signal rate variation with respect to the solar zenith angle. Moveover, JUNO can simultaneously measure $Delta m^2_{21}$ using $^8$B solar neutrinos to a precision of 20% or better depending on the central value and to sub-percent precision using reactor antineutrinos. A comparison of these two measurements from the same detector will help elucidate the current tension between the value of $Delta m^2_{21}$ reported by solar neutrino experiments and the KamLAND experiment.
We discuss an experiment to investigate neutrino physics at the LHC in Run 3, with emphasis on tau flavour. As described in our previous paper [arXiv:1903.06564v1], the detector can be installed in the decommissioned TI18 tunnel, about 480 m downstre
In the past few decades, numerous searches have been made for the neutrinoless double-beta decay (0$ ubetabeta$) process, aiming to establish whether neutrinos are their own antiparticles (Majorana neutrinos), but no 0$ ubetabeta$ decay signal has ye
Neutrinos are copiously produced at particle colliders, but no collider neutrino has ever been detected. Colliders, and particularly hadron colliders, produce both neutrinos and anti-neutrinos of all flavors at very high energies, and they are theref
These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields (Snowmass 2013) on the future program of particle physics in the U.S. Chapter 8, on the Instrumentation Frontier, discusses the instrumen
Medium-baseline reactor neutrino oscillation experiments (MBRO) have been proposed to determine the neutrino mass hierarchy (MH) and to make precise measurements of the neutrino oscillation parameters. With sufficient statistics, better than ~3%/sqrt