ﻻ يوجد ملخص باللغة العربية
In situ measurements of interplanetary coronal mass ejection (ICME) composition, including elemental abundances and charge states of heavy ions, open a new avenue to study coronal mass ejections (CMEs) besides remote-sensing observations. The ratios between different elemental abundances can diagnose the plasma origin of CMEs (e.g., from the corona or chromosphere/photosphere) due to the first ionization potential (FIP) effect, which means elements with different FIP get fractionated between the photosphere and corona. The ratios between different charge states of a specific element can provide the electron temperature of CMEs in the corona due to the freeze-in effect, which can be used to investigate their eruption process. In this review, we first give an overview of the ICME composition and then demonstrate their applications in investigating some important subjects related to CMEs, such as the origin of filament plasma and the eruption process of magnetic flux ropes. Finally, we point out several important questions that should be addressed further for better utilizing the ICME composition to study CMEs.
Fast interplanetary coronal mass ejections (interplanetary CMEs, or ICMEs) are the drivers of strongest space weather storms such as solar energetic particle events and geomagnetic storms. The connection between space weather impacting solar wind dis
Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma that may cause severe geomagnetic storms if Earth-directed. Here we report a rare instance with comprehensive in situ and remote sensing observa- tions of a CME combining wh
We present a comprehensive statistical analysis of 106 sheath regions driven by coronal mass ejections (CMEs) and measured near 1 AU. Using data from the STEREO probes, this extended analysis focuses on two discrete categorizations. In the first cate
Coronal mass ejections (CMEs) cause disturbances in the environment of the Earth when they arrive at the Earth. However, the prediction of the arrival of CMEs still remains a challenge. We have developed an interplanetary scintillation (IPS) estimati
In-situ measurements carried out by spacecraft in radial alignment are critical to advance our knowledge on the evolutionary behavior of coronal mass ejections (CMEs) and their magnetic structures during propagation through interplanetary space. Yet,