ﻻ يوجد ملخص باللغة العربية
Theoretical stellar spectra rely on model stellar atmospheres computed based on our understanding of the physical laws at play in the stellar interiors. These models, coupled with atomic and molecular line databases, are used to generate theoretical stellar spectral libraries (SSLs) comprising of stellar spectra over a regular grid of atmospheric parameters (temperature, surface gravity, abundances) at any desired resolution. Another class of SSLs is referred to as empirical spectral libraries; these contain observed spectra at limited resolution. SSLs play an essential role in deriving the properties of stars and stellar populations. Both theoretical and empirical libraries suffer from limited coverage over the parameter space. This limitation is overcome to some extent by generating spectra for specific sets of atmospheric parameters by interpolating within the grid of available parameter space. In this work, we present a method for spectral interpolation in the optical region using machine learning algorithms that are generic, easily adaptable for any SSL without much change in the model parameters, and computationally inexpensive. We use two machine learning techniques, Random Forest (RF) and Artificial Neural Networks (ANN), and train the models on the MILES library. We apply the trained models to spectra from the CFLIB for testing and show that the performance of the two models is comparable. We show that both the models achieve better accuracy than the existing methods of polynomial based interpolation and the Gaussian radial basis function (RBF) interpolation.
The perplexing mystery of what maintains the solar coronal temperature at about a million K, while the visible disc of the Sun is only at 5800 K, has been a long standing problem in solar physics. A recent study by Mondal(2020) has provided the first
We used a convolutional neural network to infer stellar rotation periods from a set of synthetic light curves simulated with realistic spot evolution patterns. We convolved these simulated light curves with real TESS light curves containing minimal i
We introduce a new machine learning based technique to detect exoplanets using the transit method. Machine learning and deep learning techniques have proven to be broadly applicable in various scientific research areas. We aim to exploit some of thes
A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are > $10^9$ photometrically cataloged sources, yet modern spectroscopic surveys are limited to ~few x $10^6$ targets. As we approach the
In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In t