ﻻ يوجد ملخص باللغة العربية
It is well-known that the interaction between passivated nanoparticles can be tuned by their complete immersion in a chosen solvent, such as water. What remains unclear on a molecular level is how nanoparticle interactions may be altered in the presence of solvent vapor where complete immersion is not achieved. In this paper, we report an all-atom molecular dynamics simulation study of the change in pair potential of mean force between dodecane thiol ligated gold nanoparticles (AuNPs) when exposed to water vapor. With the equilibrium vapor pressure of water at 25 degree C, there is very rapid condensation of water molecules onto the surface of the AuNPs in the form of mobile clusters of 100-2000 molecules that eventually coalesce into a few large clusters. When the distance between two AuNPs decreases, a water cluster bridging them provides an adhesive force that increases the depth and alters the shape of the pair-potential of mean force. That change of shape includes a decreased curvature near the minimum, consistent with experimental data showing that cyclic exposure to water vapor and its removal reversibly decreases and increases the Youngs modulus of a freely suspended self-assembled monolayer of these AuNPs.
We report the results of molecular dynamics simulations of the properties of a pseudo-atom model of dodecane thiol ligated 5-nm diameter gold nanoparticles (AuNP) in vacuum as a function of ligand coverage and particle separation in three state of ag
The behavior of four oil-in-water (O/W) ioinic nanoemulsions composed of dodecane, and mixtures of dodecane with squalene and tetra-chloro-ethylene is studied. These nanoemulsions were stabilized with sodium dodecyl sulfate (SDS). The behavior of the
We study the effect of solvent granularity on the effective force between two charged colloidal particles by computer simulations of the primitive model of strongly asymmetric electrolytes with an explicitly added hard sphere solvent. Apart from mole
Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a m
Recent experiments have shown that spatial dispersion may have a conspicuous impact on the response of plasmonic structures. This suggests that in some cases the Drude model should be replaced by more advanced descriptions that take spatial dispersio