ترغب بنشر مسار تعليمي؟ اضغط هنا

An analytic theory of shallow networks dynamics for hinge loss classification

138   0   0.0 ( 0 )
 نشر من قبل Franco Pellegrini
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural networks have been shown to perform incredibly well in classification tasks over structured high-dimensional datasets. However, the learning dynamics of such networks is still poorly understood. In this paper we study in detail the training dynamics of a simple type of neural network: a single hidden layer trained to perform a classification task. We show that in a suitable mean-field limit this case maps to a single-node learning problem with a time-dependent dataset determined self-consistently from the average nodes population. We specialize our theory to the prototypical case of a linearly separable dataset and a linear hinge loss, for which the dynamics can be explicitly solved. This allow us to address in a simple setting several phenomena appearing in modern networks such as slowing down of training dynamics, crossover between rich and lazy learning, and overfitting. Finally, we asses the limitations of mean-field theory by studying the case of large but finite number of nodes and of training samples.



قيم البحث

اقرأ أيضاً

Understanding the impact of data structure on the computational tractability of learning is a key challenge for the theory of neural networks. Many theoretical works do not explicitly model training data, or assume that inputs are drawn component-wis e independently from some simple probability distribution. Here, we go beyond this simple paradigm by studying the performance of neural networks trained on data drawn from pre-trained generative models. This is possible due to a Gaussian equivalence stating that the key metrics of interest, such as the training and test errors, can be fully captured by an appropriately chosen Gaussian model. We provide three strands of rigorous, analytical and numerical evidence corroborating this equivalence. First, we establish rigorous conditions for the Gaussian equivalence to hold in the case of single-layer generative models, as well as deterministic rates for convergence in distribution. Second, we leverage this equivalence to derive a closed set of equations describing the generalisation performance of two widely studied machine learning problems: two-layer neural networks trained using one-pass stochastic gradient descent, and full-batch pre-learned features or kernel methods. Finally, we perform experiments demonstrating how our theory applies to deep, pre-trained generative models. These results open a viable path to the theoretical study of machine learning models with realistic data.
We consider the variable selection problem of generalized linear models (GLMs). Stability selection (SS) is a promising method proposed for solving this problem. Although SS provides practical variable selection criteria, it is computationally demand ing because it needs to fit GLMs to many re-sampled datasets. We propose a novel approximate inference algorithm that can conduct SS without the repeated fitting. The algorithm is based on the replica method of statistical mechanics and vector approximate message passing of information theory. For datasets characterized by rotation-invariant matrix ensembles, we derive state evolution equations that macroscopically describe the dynamics of the proposed algorithm. We also show that their fixed points are consistent with the replica symmetric solution obtained by the replica method. Numerical experiments indicate that the algorithm exhibits fast convergence and high approximation accuracy for both synthetic and real-world data.
Existing information-theoretic frameworks based on maximum entropy network ensembles are not able to explain the emergence of heterogeneity in complex networks. Here, we fill this gap of knowledge by developing a classical framework for networks base d on finding an optimal trade-off between the information content of a compressed representation of the ensemble and the information content of the actual network ensemble. In this way not only we introduce a novel classical network ensemble satisfying a set of soft constraints but we are also able to calculate the optimal distribution of the constraints. We show that for the classical network ensemble in which the only constraints are the expected degrees a power-law degree distribution is optimal. Also, we study spatially embedded networks finding that the interactions between nodes naturally lead to non-uniform spread of nodes in the space, with pairs of nodes at a given distance not necessarily obeying a power-law distribution. The pertinent features of real-world air transportation networks are well described by the proposed framework.
Training an artificial neural network involves an optimization process over the landscape defined by the cost (loss) as a function of the network parameters. We explore these landscapes using optimisation tools developed for potential energy landscap es in molecular science. The number of local minima and transition states (saddle points of index one), as well as the ratio of transition states to minima, grow rapidly with the number of nodes in the network. There is also a strong dependence on the regularisation parameter, with the landscape becoming more convex (fewer minima) as the regularisation term increases. We demonstrate that in our formulation, stationary points for networks with $N_h$ hidden nodes, including the minimal network required to fit the XOR data, are also stationary points for networks with $N_{h} +1$ hidden nodes when all the weights involving the additional nodes are zero. Hence, smaller networks optimized to train the XOR data are embedded in the landscapes of larger networks. Our results clarify certain aspects of the classification and sensitivity (to perturbations in the input data) of minima and saddle points for this system, and may provide insight into dropout and network compression.
We present a novel framework exploiting the cascade of phase transitions occurring during a simulated annealing of the Expectation-Maximisation algorithm to cluster datasets with multi-scale structures. Using the weighted local covariance, we can ext ract, a posteriori and without any prior knowledge, information on the number of clusters at different scales together with their size. We also study the linear stability of the iterative scheme to derive the threshold at which the first transition occurs and show how to approximate the next ones. Finally, we combine simulated annealing together with recent developments of regularised Gaussian mixture models to learn a principal graph from spatially structured datasets that can also exhibit many scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا