ترغب بنشر مسار تعليمي؟ اضغط هنا

Three Lyman-alpha emitting filaments converging to a massive galaxy group at z=2.91: discussing the case for cold gas infall

65   0   0.0 ( 0 )
 نشر من قبل Emanuele Daddi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered a 300kpc-wide giant Lya nebula centered on the massive galaxy group RO-1001 at z=2.91 in the COSMOS field. Keck Cosmic Web Imager observations reveal three cold gas filaments converging into the center of the potential well of its ~4x10^13Msun dark matter halo, hosting 1200Msun/yr of star formation as probed by ALMA and NOEMA observations. The nebula morphological and kinematics properties and the prevalence of blueshifted components in the Lya spectra are consistent with a scenario of gas accretion. The upper limits on AGN activity and overall energetics favor gravity as the primary Lya powering source and infall as the main source of gas flows to the system. Although interpretational difficulties remain, with outflows and likely also photoionization with ensuing recombination still playing a role, this finding provides arguably an ideal environment to quantitatively test models of cold gas accretion and galaxy feeding inside an actively star-forming massive halo at high redshift.

قيم البحث

اقرأ أيضاً

Quasar proximity zones at $z>5.5$ correspond to over-dense and over-ionized environments. Galaxies found inside proximity zones can therefore display features which would otherwise be masked by absorption in the IGM. We demonstrate the utility of thi s quasar-galaxy synergy by reporting the discovery of the first three `proximate Lyman-$alpha$ emitters (LAEs) within the proximity zone of quasar J0836 at $z=5.802$ (textit{Aerith A, B} and textit{C}). textit{Aerith A}, located behind the quasar with an impact parameter $D_perp = 278$ pkpc, provides the first detection of a Lyman-$alpha$ transverse proximity effect. We model the transmission and show it constrains the onset of J0836s quasar phase to $0.2 text{Myr}<t<20text{Myr}$ in the past. The second object, textit{Aerith B} at a distance $D=750$ pkpc from the quasar, displays a bright, broad double-peaked lal emission line. Based on relations calibrated at $zleq3$, the peak separation implies a low ionizing $f_{text{esc}} lesssim 1%$, the most direct such constraint on a reionization-era galaxy. We fit the Ly-$alpha$ line with an outflowing shell model, finding a completely typical central density $text{log N}_{text{HI}}/text{cm}^{-2} = 19.3_{-0.2}^{+0.8}$, outflow velocity $v=16_{-11}^{+4}$ km s$^{-1}$, and gas temperature $text{log} T/text{K} = 3.8_{-0.7}^{+0.8}$ compared to $2<z<3$ analogue LAEs. Finally, we detect an emission line at $lambda=8177$ AA in object textit{Aerith C} which, if it is lal at $z=5.726$, would correspond closely with the end of the quasars proximity zone ($Delta z<0.02$ from the boundary) and suggests the quasar influences the IGM up to $sim85$ cMpc away, making it the largest quasar proximity zone. Via the analyses conducted here, we illustrate how proximate LAEs offer unique insight into the ionizing properties of both quasars and galaxies during the epoch of reionization.
We present IRAM PdBI observations of the CO(3-2) and CO(5-4) line transitions from a Ly-alpha blob at z~2.7 in order to investigate the gas kinematics, determine the location of the dominant energy source, and study the physical conditions of the mol ecular gas. CO line and dust continuum emission are detected at the location of a strong MIPS source that is offset by ~1.5 from the Ly-alpha peak. Neither of these emission components is resolved with the 1.7 beam, showing that the gas and dust are confined to within ~7kpc from this galaxy. No millimeter source is found at the location of the Ly-alpha peak, ruling out a central compact source of star formation as the power source for the Ly-alpha emission. Combined with a spatially-resolved spectrum of Ly-alpha and HeII, we constrain the kinematics of the extended gas using the CO emission as a tracer of the systemic redshift. Near the MIPS source, the Ly-alpha profile is symmetric and its line center agrees with that of CO line, implying that there are no significant bulk flows and that the photo-ionization from the MIPS source might be the dominant source of the Ly-alpha emission. In the region near the Ly-alpha peak, the gas is slowly receding (~100km/s) with respect to the MIPS source, thus making the hyper-/superwind hypothesis unlikely. We find a sub-thermal line ratio between two CO transitions, I_CO(5-4)/I_CO(3-2)=0.97+/-0.21. This line ratio is lower than the average values found in high-z SMGs and QSOs, but consistent with the value found in the Galactic center, suggesting that there is a large reservoir of low-density molecular gas that is spread over the MIPS source and its vicinity.
Ly$alpha$-emitting galaxies (LAEs) are easily detectable in the high-redshift Universe and are potentially efficient tracers of large scale structure at early epochs, as long as their observed properties do not strongly depend on environment. We inve stigate the luminosity and equivalent width functions of LAEs in the overdense field of a protocluster at redshift $z simeq 3.78$. Using a large sample of LAEs (many spectroscopically confirmed), we find that the Ly$alpha$ luminosity distribution is well-represented by a Schechter (1976) function with $log(L^{ast}/{rm erg s^{-1}}) = 43.26^{+0.20}_{-0.22}$ and $log(phi^{ast}/{rm Mpc^{-3}})=-3.40^{+0.03}_{-0.04}$ with $alpha=-1.5$. Fitting the equivalent width distribution as an exponential, we find a scale factor of $omega=79^{+15}_{-15}$ Angstroms. We also measured the Ly$alpha$ luminosity and equivalent width functions using the subset of LAEs lying within the densest cores of the protocluster, finding similar values for $L^*$ and $omega$. Hence, despite having a mean overdensity more than 2$times$ that of the general field, the shape of the Ly$alpha$ luminosity function and equivalent width distributions in the protocluster region are comparable to those measured in the field LAE population by other studies at similar redshift. While the observed Ly$alpha$ luminosities and equivalent widths show correlations with the UV continuum luminosity in this LAE sample, we find that these are likely due to selection biases and are consistent with no intrinsic correlations within the sample. This protocluster sample supports the strong evolutionary trend observed in the Ly$alpha$ escape fraction and suggest that lower redshift LAEs can be on average significantly more dusty that their counterparts at higher redshift.
108 - Yu Qiu 2020
Galaxy clusters are the most massive collapsed structures in the universe whose potential wells are filled with hot, X-ray emitting intracluster medium. Observations however show that a significant number of clusters (the so-called cool-core clusters ) also contain large amounts of cold gas in their centres, some of which is in the form of spatially extended filaments spanning scales of tens of kiloparsecs. These findings have raised questions about the origin of the cold gas, as well as its relationship with the central active galactic nucleus (AGN), whose feedback has been established as a ubiquitous feature in such galaxy clusters. Here we report a radiation hydrodynamic simulation of AGN feedback in a galaxy cluster, in which cold filaments form from the warm, AGN-driven outflows with temperatures between $10^4$ and $10^7$ K as they rise in the cluster core. Our analysis reveals a new mechanism, which, through the combination of radiative cooling and ram pressure, naturally promotes outflows whose cooling time is shorter than their rising time, giving birth to spatially extended cold gas filaments. Our results strongly suggest that the formation of cold gas and AGN feedback in galaxy clusters are inextricably linked and shed light on how AGN feedback couples to the intracluster medium.
We present a study of ~100 high redshift (z~2-4) extremely strong damped Lyman-alpha systems (ESDLA, with N(HI)>0.5x10^22 cm^-2) detected in quasar spectra from the Baryon Oscillation Spectroscopic Survey SDSS-III DR11. We study the neutral hydrogen, metal, and dust content of this elusive population of absorbers and confirm our previous finding that the high column density end of the N(HI) frequency distribution has a relatively shallow slope with power-law index -3.6, similar to what is seen from 21-cm maps in nearby galaxies. The stacked absorption spectrum indicates a typical metallicity ~1/20th solar, similar to the mean metallicity of the overall DLA population. The relatively small velocity extent of the low-ionisation lines suggests that ESDLAs do not arise from large-scale flows of neutral gas. The high column densities involved are in turn more similar to what is seen in DLAs associated with gamma-ray burst afterglows (GRB-DLAs), which are known to occur close to star forming regions. This indicates that ESDLAs arise from lines of sight passing at very small impact parameters from the host galaxy, as observed in nearby galaxies. This is also supported by simple theoretical considerations and recent high-z hydrodynamical simulations. We strongly substantiate this picture by the first statistical detection of Lya emission with <L>~(0.6+/-0.2)x10^42 erg/s in the core of ESDLAs (corresponding to about 0.1 L* at z~2-3), obtained through stacking the fibre spectra (of radius 1 corresponding to ~8 kpc at z~2.5). [truncated]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا