ﻻ يوجد ملخص باللغة العربية
The strong cosmic censorship conjecture proposes that starting from generic initial data on some Cauchy surface, the solutions of the Einstein equation should not be extendable across the boundary of the domain of dependence of that surface. For the case of the Reissner-Nordstrom-de Sitter spacetime this means that any perturbation should blow up sufficiently badly when approaching this boundary, called the Cauchy horizon. However, recent results indicate that for highly charged black holes classical scalar perturbations allow for a violation of strong cosmic censorship. In a recent paper arXiv:1912.06047, two of us have argued that quantum effects will restore censorship for generic values of the black hole parameters. But, due to practical limitations, the precise form of the divergence was only calculated for a small number of parameters. Here we perform a thorough parameter scan using an alternative, more efficient semi-analytic method. Our analysis confirms arXiv:1912.06047 in the sense that the quantum stress tensor is found to diverge badly generically. However, the sign of the divergence can be changed by changing the mass of the field or the spacetime parameters, leading to a drastically different type of singularity on the Cauchy horizon.
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration e
Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstrom and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete:
We prove the linear stability of subextremal Reissner-Nordstrom spacetimes as solutions to the Einstein-Maxwell equation. We make use of a novel representation of gauge-invariant quantities which satisfy a symmetric system of coupled wave equations.
The Reissner-Nordstrom-de Sitter (RN-dS) spacetime can be considered as a thermodynamic system. Its thermodynamic properties are discussed that the RN-dS spacetime has phase transitions and critical phenomena similar to that of the Van de Waals syste
We start from a static, spherically symmetric space-time in the presence of an electrostatic field and construct the mini-superspace Lagrangian that reproduces the well known Reissner - Nordstrom solution. We identify the classical integrals of motio