ترغب بنشر مسار تعليمي؟ اضغط هنا

Toward a quantum-enhanced strontium optical lattice clock at INRIM

261   0   0.0 ( 0 )
 نشر من قبل Marco Giacinto Tarallo
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Marco G. Tarallo




اسأل ChatGPT حول البحث

The new strontium atomic clock at INRIM seeks to establish a new frontier in quantum measurement by joining state-of-the-art optical lattice clocks and the quantized electromagnetic field provided by a cavity QED setup. The goal of our experiment is to apply advanced quantum techniques to state-of-the-art optical lattice clocks, demonstrating enhanced sensitivity while preserving long coherence times and the highest accuracy. In this paper we describe the current status of the experiment and the prospected sensitivity gain for the designed cavity QED setup.

قيم البحث

اقرأ أيضاً

82 - N. Poli , M. Schioppo , S. Vogt 2014
We report on a transportable optical clock, based on laser-cooled strontium atoms trapped in an optical lattice. The experimental apparatus is composed of a compact source of ultra-cold strontium atoms including a compact cooling laser set-up and a t ransportable ultra-stable laser for interrogating the optical clock transition. The whole setup (excluding electronics) fits within a volume of less than 2 m$^3$. The high degree of operation reliability of both systems allowed the spectroscopy of the clock transition to be performed with 10 Hz resolution. We estimate an uncertainty of the clock of $7times10^{-15}$.
We report on the realization of a magneto-optical trap (MOT) for metastable strontium operating on the 2.92 $mu$m transition between the energy levels $5s5p~^3mathrm{P}_2$ and $5s4d~^3mathrm{D}_3$. The strontium atoms are initially captured in a MOT operating on the 461 nm transition between the energy levels $5s^2~^1mathrm{S}_0$ and $5s5p~^1mathrm{P}_1$, prior to being transferred into the metastable MOT and cooled to a final temperature of 6 $mu$K. Challenges arising from aligning the mid-infrared and 461 nm light are mitigated by employing the same pyramid reflector to realize both MOTs. Finally, the 2.92 $mu$m transition is used to realize a full cooling sequence for an optical lattice clock, in which cold samples of $^{87}mathrm{Sr}$ are loaded into a magic-wavelength optical lattice and initialized in a spin-polarized state to allow high-precision spectroscopy of the $5s^2~^1mathrm{S}_0$ to $5s5p~^3mathrm{P}_0$ clock transition.
80 - K. Bongs , Y. Singh , L. Smith 2015
Ultra-precise optical clocks in space will allow new studies in fundamental physics and astronomy. Within an European Space Agency (ESA) program, the Space Optical Clocks (SOC) project aims to install and to operate an optical lattice clock on the In ternational Space Station (ISS) towards the end of this decade. It would be a natural follow-on to the ACES mission, improving its performance by at least one order of magnitude. The payload is planned to include an optical lattice clock, as well as a frequency comb, a microwave link, and an optical link for comparisons of the ISS clock with ground clocks located in several countries and continents. Within the EU-FP7-SPACE-2010-1 project no. 263500, during the years 2011-2015 a compact, modular and robust strontium lattice optical clock demonstrator has been developed. Goal performance is a fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional inaccuracy below 5x10^{-17}. Here we describe the current status of the apparatus development, including the laser subsystems. Robust preparation of cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.
The ESA mission Space Optical Clock project aims at operating an optical lattice clock on the ISS in approximately 2023. The scientific goals of the mission are to perform tests of fundamental physics, to enable space-assisted relativistic geodesy an d to intercompare optical clocks on the ground using microwave and optical links. The performance goal of the space clock is less than $1 times 10^{-17}$ uncertainty and $1 times 10^{-15} {tau}^{-1/2}$ instability. Within an EU-FP7-funded project, a strontium optical lattice clock demonstrator has been developed. Goal performances are instability below $1 times 10^{-15} {tau}^{-1/2}$ and fractional inaccuracy $5 times 10^{-17}$. For the design of the clock, techniques and approaches suitable for later space application are used, such as modular design, diode lasers, low power consumption subunits, and compact dimensions. The Sr clock apparatus is fully operational, and the clock transition in $^{88}$Sr was observed with linewidth as small as 9 Hz.
We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping $^{87}$Sr and $^{171}$Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of 100 $mu$m between the trapped Sr and Yb atoms. The $^{1}$S$_{0}$-$^{3}$P$_{0}$ clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا