ترغب بنشر مسار تعليمي؟ اضغط هنا

GRB Fermi-LAT afterglows: explaining flares, breaks, and energetic photons

78   0   0.0 ( 0 )
 نشر من قبل Nissim Fraija
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi-LAT collaboration presented the second gamma-ray burst (GRB) catalog covering its first 10 years of operations. A significant fraction of afterglow-phase light curves in this catalog cannot be explained by the closure relations of the standard synchrotron forward-shock model, suggesting that there could be an important contribution from another process. In view of the above, we derive the synchrotron self-Compton (SSC) light curves from the reverse shock in the thick- and thin-shell regime for a uniform-density medium. We show that this emission could explain the GeV flares exhibited in some LAT light curves. Additionally, we demonstrate that the passage of the forward shock synchrotron cooling break through the LAT band from jets expanding in a uniform-density environment may be responsible for the late time ($approx10^2$ s) steepening of LAT GRB afterglow light curves. As a particular case, we model the LAT light curve of GRB 160509A that exhibited a GeV flare together with a break in the long-lasting emission, and also two very high energy photons with energies of 51.9 and 41.5 GeV observed 76.5 and 242 s after the onset of the burst, respectively. Constraining the microphysical parameters and the circumburst density from the afterglow observations, we show that the GeV flare is consistent with a SSC reverse-shock model, the break in the long-lasting emission with the passage of the synchrotron cooling break through the Fermi-LAT band and the very energetic photons with SSC emission from the forward shock when the outflow carries a significant magnetic field ($R_{rm B} simeq 30$) and it decelerates in a uniform-density medium with a very low density ($n=4.554^{+1.128}_{-1.121}times 10^{-4},{rm cm^{-3}}$).



قيم البحث

اقرأ أيضاً

This study presents multi-wavelength observational results for energetic GRB100414A with GeV photons. The prompt spectral fitting using Suzaku/WAM data yielded spectral peak energies of E^src_peak of 1458.7 (+132.6, -106.6) keV and Eiso of 34.5(+2.0, -1.8) x 10^52 erg with z=1.368. The optical afterglow light curves between 3 and 7 days were effectively fitted according to a simple power law with a temporal index of alpha=-2.6 +/- 0.1. The joint light curve with earlier Swift/UVOT observations yields a temporal break at 2.3 +/- 0.2 days. This was the first fermi/LAT detected event that demonstrated the clear temporal break in the optical afterglow. The jet opening angle derived from this temporal break was 5.8 degree, consistent with those of other well-observed long gamma-ray bursts (GRBs). The multi-wavelength analyses in this study showed that GRB100414A follows E^src_peak-Eiso and E^src_peak-E_gamma correlations. The late afterglow revealed a flatter evolution with significant excesses at 27.2 days. The most straightforward explanation for the excess is that GRB100414A was accompanied by a contemporaneous supernova. The model light curve based on other GRB-SN events is marginally consistent with that of the observed lightcurve.
161 - A. Panaitescu 2016
We present the light-curves and spectra of 24 afterglows that have been monitored by Fermi-LAT at 0.1-100 GeV over more than a decade in time. All light-curves (except 130427) are consistent with a single power-law starting from their peaks, which oc curred, in most cases, before the burst end. The light-curves display a brightness-decay rate correlation, with all but one (130427) of the bright afterglows decaying faster than the dimmer afterglows. We attribute this dichotomy to a quick deposition of the relativistic ejecta energy in the external-shock for the brighter/faster-decaying afterglows and to an extended energy-injection in the afterglow shock for the dimmer/slower-decaying light-curves. The spectra of six afterglows (090328, 100414, 110721, 110731, 130427, 140619B) indicate the existence of a harder component above a spectral dip/ankle at energy 0.3-3 GeV, offering evidence for an inverse-Compton emission at higher energies, and suggesting that the harder power-law spectra of five other LAT afterglows (130327B, 131231, 150523, 150627, 160509) could also be inverse-Compton, while the remaining softer LAT afterglows should be synchrotron. Marginal evidence for a spectral break and softening at higher energies is found for two afterglows (090902B and 090926).
The VHE component from at least two GRBs, i.e., GRB180720B and GRB190114C, has been detected in the afterglow phase. We systematically analyzed 199 GRBs detected by Fermi-LAT during 2008-2019. If an additional high-energy component exists in the afte rglows of Fermi-LAT GRBs, the best-fit spectral model could be a broken power-law (BPL) model with an upturn above a break energy. We compare the afterglow spectra using PL and BPL representations. Out of the 30 GRBs with >10GeV photons that arrived after T90, 25 GRBs are tentatively or significantly detected at 0.1-200 GeV after 2*T90. The spectrum of GRB131231A shows an upturn above a break of 1.6+-0.8~GeV, supporting the BPL model. For GRB131231A, we performed a modeling of its X-ray and gamma-ray spectra, and found that the SSC model can explain the upturn with acceptable parameter values. In the cases of GRBs 190114C, 171210A, 150902A, 130907A, 130427A, and 090902B, the improvement of the BPL fit compared to the PL fit is tentative or marginal. There is no conclusive evidence that an additional higher energy component commonly exists in Fermi-LAT GRB afterglows, except for a group of Fermi-LAT GRBs mentioned above. Such an additional high-energy component may be explained by the synchrotron self-Compton mechanism. Current and future VHE observations will provide important constraints on the issue.
The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This sensitivity has enabled the LAT to detect gamma-ray emission from the Sun during quiescent periods from pions produced by cosmic-ray protons interacting in the solar atmosphere and from cosmic-ray electrons interacting with solar optical photons. The LAT has detected high-energy gamma-ray emission associated with GOES M-class and X-class X-ray flares accompanied by coronal mass ejections and solar energetic particle events. In a number of cases, LAT has detected gamma rays with energies up to several hundreds of MeV during the impulsive phase and gamma rays up to GeV energies sustained for several hours after the impulsive phase. This presentation focuses on observations in the impulsive emission phase in solar flares, including the modest GOES M2-class flare at SOL2010-06-12T0057 and more recent detections, such as the bright X-class flares of March 2012.
We present a systematic temporal and spectral study of all Swift-XRT observations of GRB afterglows discovered between 2005 January and 2007 December. After constructing and fitting all light curves and spectra to power-law models, we classify the co mponents of each afterglow in terms of the canonical X-ray afterglow and test them against the closure relations of the forward shock models for a variety of parameter combinations. The closure relations are used to identify potential jet breaks with characteristics including the uniform jet model with and without lateral spreading and energy injection, and a power-law structured jet model, all with a range of parameters. With this technique, we survey the X-ray afterglows with strong evidence for jet breaks (~12% of our sample), and reveal cases of potential jet breaks that do not appear plainly from the light curve alone (another ~30%), leading to insight into the missing jet break problem. Those X-ray light curves that do not show breaks or have breaks that are not consistent with one of the jet models are explored to place limits on the times of unseen jet breaks. The distribution of jet break times ranges from a few hours to a few weeks with a median of ~1 day, similar to what was found pre-Swift. On average Swift GRBs have lower isotropic equivalent gamma-ray energies, which in turn results in lower collimation corrected gamma-ray energies than those of pre-Swift GRBs. Finally, we explore the implications for GRB jet geometry and energetics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا