ﻻ يوجد ملخص باللغة العربية
We quantify the performance of mass mapping techniques on mock imaging and gravitational lensing data of galaxy clusters. The optimum method depends upon the scientific goal. We assess measurements of clusters radial density profiles, departures from sphericity, and their filamentary attachment to the cosmic web. We find that mass maps produced by direct (KS93) inversion of shear measurements are unbiased, and that their noise can be suppressed via filtering with MRLens. Forward-fitting techniques, such as Lenstool, suppress noise further, but at a cost of biased ellipticity in the cluster core and over-estimation of mass at large radii. Interestingly, current searches for filaments are noise-limited by the intrinsic shapes of weakly lensed galaxies, rather than by the projection of line-of-sight structures. Therefore, space-based or balloon-based imaging surveys that resolve a high density of lensed galaxies, could soon detect one or two filaments around most clusters.
Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To date, recovering convergence maps has been performed using a planar approximation of the celestial sphere. However, with the i
We present a comparison between approximated methods for the construction of mock catalogs based on the halo-bias mapping technique. To this end, we use as reference a high resolution $N$-body simulation of 3840$^3$ dark matter particles on a 400$h^{
In this paper, we study the statistical properties of weak lensing peaks in light-cones generated from cosmological simulations. In order to assess the prospects of such observable as a cosmological probe, we consider simulations that include interac
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6,$GeV/$c^2$ scattering off nuclei. The detecto
Using a combined analysis of strong lensing and galaxy dynamics, we characterize the mass distributions and M/L ratios of galaxy groups, which form an important transition regime in Lambda-CDM cosmology. By mapping the underlying mass distribution, w