ﻻ يوجد ملخص باللغة العربية
The STAR Beam Energy Scan program has found a difference in the global polarization of $Lambda$s and $bar{Lambda}$s produced in $Au+Au$ collisions. This difference is larger for lower center of mass collision energies. In this work we show that a two-component source, consisting of a high density core and a lower density corona, can describe quantitatively the $Lambda$ and $bar{Lambda}$ polarization as a function of collision energy.
We investigate the two-particle intensity correlation function of $Lambda$ in relativistic heavy-ion collisions. We find that the behavior of the $LambdaLambda$ correlation function at small relative momenta is fairly sensitive to the interaction pot
With a Yang-Mills flux-tube initial state and a high resolution (3+1)D Particle-in-Cell Relativistic (PICR) hydrodynamics simulation, we calculate the $Lambda$ polarization for different energies. The origination of polarization in high energy collis
We propose the measurement of net $Lambda$ and $bar{Lambda}$ helicity, correlated event-by-event with the magnitude and sign of charge separation along the events magnetic field direction, as a probe to investigate the Chiral Magnetic Effect in Heavy
We consider $Lambda$ and $bar{Lambda}$ production in a wide range of proton scattering experiments. The produced $Lambda$ and $bar{Lambda}$ may or may not contain a diquark remnant of the beam proton. The ratio of these two production mechanisms is f
Predictions for the global polarization of $Lambda$ hyperons in Au+Au collisions at moderately relativistic collision energies, 2.4 $leqsqrt{s_{NN}}leq$ 11 GeV, are made. These are based on the thermodynamic approach to the global polarization incorp