ترغب بنشر مسار تعليمي؟ اضغط هنا

Universally Quantized Neural Compression

87   0   0.0 ( 0 )
 نشر من قبل Lucas Theis
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

A popular approach to learning encoders for lossy compression is to use additive uniform noise during training as a differentiable approximation to test-time quantization. We demonstrate that a uniform noise channel can also be implemented at test time using universal quantization (Ziv, 1985). This allows us to eliminate the mismatch between training and test phases while maintaining a completely differentiable loss function. Implementing the uniform noise channel is a special case of the more general problem of communicating a sample, which we prove is computationally hard if we do not make assumptions about its distribution. However, the uniform special case is efficient as well as easy to implement and thus of great interest from a practical point of view. Finally, we show that quantization can be obtained as a limiting case of a soft quantizer applied to the uniform noise channel, bridging compression with and without quantization.

قيم البحث

اقرأ أيضاً

We introduce a simple recurrent variational auto-encoder architecture that significantly improves image modeling. The system represents the state-of-the-art in latent variable models for both the ImageNet and Omniglot datasets. We show that it natura lly separates global conceptual information from lower level details, thus addressing one of the fundamentally desired properties of unsupervised learning. Furthermore, the possibility of restricting ourselves to storing only global information about an image allows us to achieve high quality conceptual compression.
We present a machine learning-based approach to lossy image compression which outperforms all existing codecs, while running in real-time. Our algorithm typically produces files 2.5 times smaller than JPEG and JPEG 2000, 2 times smaller than WebP, and 1.7 times smaller than BPG on datasets of generic images across all quality levels. At the same time, our codec is designed to be lightweight and deployable: for example, it can encode or decode the Kodak dataset in around 10ms per image on GPU. Our architecture is an autoencoder featuring pyramidal analysis, an adaptive coding module, and regularization of the expected codelength. We also supplement our approach with adversarial training specialized towards use in a compression setting: this enables us to produce visually pleasing reconstructions for very low bitrates.
We propose a new approach to the problem of optimizing autoencoders for lossy image compression. New media formats, changing hardware technology, as well as diverse requirements and content types create a need for compression algorithms which are mor e flexible than existing codecs. Autoencoders have the potential to address this need, but are difficult to optimize directly due to the inherent non-differentiabilty of the compression loss. We here show that minimal changes to the loss are sufficient to train deep autoencoders competitive with JPEG 2000 and outperforming recently proposed approaches based on RNNs. Our network is furthermore computationally efficient thanks to a sub-pixel architecture, which makes it suitable for high-resolution images. This is in contrast to previous work on autoencoders for compression using coarser approximations, shallower architectures, computationally expensive methods, or focusing on small images.
We propose a very simple and efficient video compression framework that only focuses on modeling the conditional entropy between frames. Unlike prior learning-based approaches, we reduce complexity by not performing any form of explicit transformatio ns between frames and assume each frame is encoded with an independent state-of-the-art deep image compressor. We first show that a simple architecture modeling the entropy between the image latent codes is as competitive as other neural video compression works and video codecs while being much faster and easier to implement. We then propose a novel internal learning extension on top of this architecture that brings an additional 10% bitrate savings without trading off decoding speed. Importantly, we show that our approach outperforms H.265 and other deep learning baselines in MS-SSIM on higher bitrate UVG video, and against all video codecs on lower framerates, while being thousands of times faster in decoding than deep models utilizing an autoregressive entropy model.
133 - David Cox 2016
We present a self-contained system for constructing natural language models for use in text compression. Our system improves upon previous neural network based models by utilizing recent advances in syntactic parsing -- Googles SyntaxNet -- to augmen t character-level recurrent neural networks. RNNs have proven exceptional in modeling sequence data such as text, as their architecture allows for modeling of long-term contextual information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا