ترغب بنشر مسار تعليمي؟ اضغط هنا

Seeds of Life in Space (SOLIS). X. Interstellar Complex Organic Molecules in the NGC 1333 IRAS 4A outflows

81   0   0.0 ( 0 )
 نشر من قبل Marta De Simone
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: A unique environment to study how interstellar Complex Organic Molecules (iCOMs) can be formed is the shocked gas along low-mass protostellar outflows, as the dust mantles composition is sputtered into the gas phase. The chemical richness in these environments has been so far studied only in the L1157 blue shifted outflow. Methods: To understand if the L1157-B1 case is unique, we imaged the NGC 1333 IRAS 4A outflows using the NOEMA (NOrthern Extended Millimeter Array) interferometer as part of the IRAM SOLIS (Seeds Of Life in Space) Large Program and compared the observations with the GRAINOBLE+ gas phase astrochemical model. Results: Several iCOMs were detected in the IRAS 4A outflows: methanol (CH$_3$OH), acetaldehyde (CH$_3$CHO), formamide (NH$_2$CHO) and dimethyl ether (CH$_3$OCH$_3$), all sampling upper excitation energy up to $sim$30 K. We found a significant chemical differentiation between the IRAS 4A1 outflow, showing a richer molecular content, and the IRAS 4A2 one. The CH$_3$OH/CH$_3$CHO abundance ratio is lower by a factor $sim$4 in the former; furthermore the ratio in both outflows is lower by a factor $sim$10 with respect to hot corinos values. Conclusions: After L1157-B1, IRAS 4A outflow is now the second outflow to show an evident chemical complexity. Given that CH$_3$OH is a grain surface species, GRAINOBLE+ reproduced our observations assuming acetaldehyde formation in gas phase by the reaction of ethyl radical (CH$_3$CH$_2$) with atomic oxygen. Moreover, the chemical differentiation between the two outflows suggests that the IRAS 4A1 outflow is likely younger than the IRAS 4A2 one. Further investigation is needed to constrain the age of the outflow and observations of even younger shocks are necessary and future spectroscopic studies on CH$_3$CH$_2$ are needed to be able to observe this species and provide strong constraints on the CH$_3$CHO formation.



قيم البحث

اقرأ أيضاً

Complex organic molecules have been observed for decades in the interstellar medium. Some of them might be considered as small bricks of the macromolecules at the base of terrestrial life. It is hence particularly important to understand organic chem istry in Solar-like star forming regions. In this article, we present a new observational project: SOLIS (Seeds Of Life In Space). This is a Large Project at the IRAM-NOEMA interferometer, and its scope is to image the emission of several crucial organic molecules in a sample of Solar-like star forming regions in different evolutionary stage and environments. Here, we report the first SOLIS results, obtained from analysing the spectra of different regions of the Class 0 source NGC1333-IRAS4A, the protocluster OMC-2 FIR4, and the shock site L1157-B1. The different regions were identified based on the images of formamide (NH2CHO) and cyanodiacetylene (HC5N) lines. We discuss the observed large diversity in the molecular and organic content, both on large (3000-10000 au) and relatively small (300-1000 au) scales. Finally, we derive upper limits to the methoxy fractional abundance in the three observed regions of the same order of magnitude of that measured in few cold prestellar objects, namely ~10^-12-10^-11 with respect to H2 molecules.
138 - A. Coutens , C. Vastel , S. Cabrit 2013
Aims. The aim of this paper is to study deuterated water in the solar-type protostars NGC1333 IRAS4A and IRAS4B, to compare their HDO abundance distribution with other star-forming regions, and to constrain their HDO/H2O ratios. Methods. Using the He rschel/HIFI instrument as well as ground-based telescopes, we observed several HDO lines covering a large excitation range (Eup/k=22-168 K) towards these protostars and an outflow position. Non-LTE radiative transfer codes were then used to determine the HDO abundance profiles in these sources. Results. The HDO fundamental line profiles show a very broad component, tracing the molecular outflows, in addition to a narrower emission component and a narrow absorbing component. In the protostellar envelope of NGC1333 IRAS4A, the HDO inner (T>100 K) and outer (T<100 K) abundances with respect to H2 are estimated at 7.5x10^{-9} and 1.2x10^{-11}, respectively, whereas, in NGC1333 IRAS4B, they are 1.0x10^{-8} and 1.2x10^{-10}, respectively. Similarly to the low-mass protostar IRAS16293-2422, an absorbing outer layer with an enhanced abundance of deuterated water is required to reproduce the absorbing components seen in the fundamental lines at 465 and 894 GHz in both sources. This water-rich layer is probably extended enough to encompass the two sources as well as parts of the outflows. In the outflows emanating from NGC1333 IRAS4A, the HDO column density is estimated at about (2-4)x10^{13} cm^{-2}, leading to an abundance of about (0.7-1.9)x10^{-9}. An HDO/H2O ratio between 7x10^{-4} and 9x10^{-2} is derived in the outflows. In the warm inner regions of these two sources, we estimate the HDO/H2O ratios at about 1x10^{-4}-4x10^{-3}. This ratio seems higher (a few %) in the cold envelope of IRAS4A, whose possible origin is discussed in relation to formation processes of HDO and H2O.
Aim: In the past, observations of protostellar shocks have been able to set constraints on the formation route of formamide (NH2CHO), exploiting its observed spatial distribution and comparison with astrochemical model predictions. In this work, we f ollow the same strategy to study the case of acetaldehyde (CH3CHO). Method: To this end, we used the data obtained with the IRAM-NOEMA interferometer in the framework of the Large Program SOLIS to image the B0 and B1 shocks along the L1157 blueshifted outflow in methanol (CH3OH) and acetaldehyde line emission. Results: We imaged six CH3OH and eight CH3CHO lines which cover upper level energies up to 30 K. Both species trace the B0 molecular cavity as well as the northern B1 portion, i.e. the regions where the youngest shocks (1000 yr) occurred. The CH$_3$OH and CH$_3$CHO emission peaks towards the B1b clump, where we measured the following column densities and relative abundances: 1.3 x 10^16 cm-2 and 6.5 x 10-6 (methanol), and 7 x 10^13 cm-2 and 3.5 x 10-8 (acetaldehyde). We carried out a non-LTE LVG analysis of the observed CH3OH line: the average kinetic temperature and density of the emitting gas are Tkin = 90 K and nH2 = 4 x 10^5 cm-3, respectively. The CH3OH and CH3CHO abundance ratio towards B1b is 190, varying by less than a factor 3 throughout the whole B0-B1 structure. Conclusions: The comparison of astrochemical model predictions with the observed methanol and acetaldehyde spatial distribution does not allow to distinguish whether acetaldehyde is formed on the grain mantles or rather on the gas-phase, as its gas-phase formation, dominated by the reaction of ethyl radical (CH3CH2) with atomic oxygen, is very fast. Observations of acetaldehyde in younger shocks, e.g. 10^2 yr old, or/and of the ethyl radical, whose frequencies are not presently available, are necessary to settle the issue.
The NGC 1333 IRAS 4A protobinary was observed in the ammonia (2, 2) and (3, 3) lines and in the 1.3 cm continuum with a high resolution (about 1.0 arcsec). The ammonia maps show two compact sources, one for each protostar, and they are probably proto stellar accretion disks. The disk associated with IRAS 4A2 is seen nearly edge-on and shows an indication of rotation. The A2 disk is brighter in the ammonia lines but dimmer in the dust continuum than its sibling disk, with the ammonia-to-dust flux ratios different by about an order of magnitude. This difference suggests that the twin disks have surprisingly dissimilar characters, one gas-rich and the other dusty. The A2 disk may be unusually active or hot, as indicated by its association with water vapor masers. The existence of two very dissimilar disks in a binary system suggests that the formation process of multiple systems has a controlling agent lacking in the isolated star formation process and that stars belonging to a multiple system do not necessarily evolve in phase with each other.
We present the first census of the interstellar Complex Organic Molecules (iCOMs) in the low-mass Class I protostar SVS13-A, obtained by analysing data from the IRAM-30m Large Project ASAI (Astrochemical Surveys At IRAM). They consist of an high-sens itivity unbiased spectral survey at the 1mm, 2mm and 3mm IRAM bands. We detected five iCOMs: acetaldehyde (CH$_3$CHO), methyl formate (HCOOCH$_3$), dimethyl ether (CH$_3$OCH$_3$), ethanol (CH$_3$CH$_2$OH) and formamide (NH$_2$CHO). In addition we searched for other iCOMs and ketene (H$_2$CCO), formic acid (HCOOH) and methoxy (CH$_3$O), whose only ketene was detected. The numerous detected lines, from 5 to 37 depending on the species, cover a large upper level energy range, between 15 and 254 K. This allowed us to carry out a rotational diagram analysis and derive rotational temperatures between 35 and 110 K, and column densities between $3times 10^{15}$ and $1times 10^{17}$ cm$^{-2}$ on the 0.3 size previously determined by interferometric observations of glycolaldehyde. These new observations clearly demonstrate the presence of a rich chemistry in the hot corino towards SVS13-A. The measured iCOMs abundances were compared to other Class 0 and I hot corinos, as well as comets, previously published in the literature. We find evidence that (i) SVS13-A is as chemically rich as younger Class 0 protostars, and (ii) the iCOMs relative abundances do not substantially evolve during the protostellar phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا