ﻻ يوجد ملخص باللغة العربية
Assume that the vertices of a graph $G$ are always operational, but the edges of $G$ are operational independently with probability $p in[0,1]$. For fixed vertices $s$ and $t$, the emph{two-terminal reliability} of $G$ is the probability that the operational subgraph contains an $(s,t)$-path, while the emph{all-terminal reliability} of $G$ is the probability that the operational subgraph contains a spanning tree. Both reliabilities are polynomials in $p$, and have very similar behaviour in many respects. However, unlike all-terminal reliability, little is known about the roots of two-reliability polynomials. In a variety of ways, we shall show that the nature and location of the roots of two-terminal reliability polynomials have significantly different properties than those held by roots of the all-terminal reliability.
Assume that the vertices of a graph $G$ are always operational, but the edges of $G$ fail independently with probability $q in[0,1]$. The emph{all-terminal reliability} of $G$ is the probability that the resulting subgraph is connected. The all-termi
In this short note we observe that recent results of Abert and Hubai and of Csikvari and Frenkel about Benjamini--Schramm continuity of the holomorphic moments of the roots of the chromatic polynomial extend to the theory of dense graph sequences. We
We show that a monic univariate polynomial over a field of characteristic zero, with $k$ distinct non-zero known roots, is determined by its $k$ proper leading coefficients by providing an explicit algorithm for computing the multiplicities of each r
We find precise asymptotic estimates for the number of planar maps and graphs with a condition on the minimum degree, and properties of random graphs from these classes. In particular we show that the size of the largest tree attached to the core of
In this paper, we discuss maximality of Seidel matrices with a fixed largest eigenvalue. We present a classification of maximal Seidel matrices of largest eigenvalue $3$, which gives a classification of maximal equiangular lines in a Euclidean space