ترغب بنشر مسار تعليمي؟ اضغط هنا

Coupling of lattice, spin and intra-configurational excitations of Eu3+ in Eu2ZnIrO6

95   0   0.0 ( 0 )
 نشر من قبل Birender Singh
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In Eu2ZnIrO6, effectively two atoms are active i.e. Ir is magnetically active, which results in complex magnetic ordering within the Ir sublattice at low temperature. On the other hand, although Eu is a van-vleck paramagnet, it is active in the electronic channels involving 4f 6 crystal-field split levels. Phonons, quanta of lattice vibration, involving vibration of atoms in the unit cell, are intimately coupled with both magnetic and electronic degrees of freedom (DoF). Here, we report a comprehensive study focusing on the phonons as well as intra-configurational excitations in double-perovskite Eu2ZnIrO6. Our studies reveal strong coupling of phonons with the underlying magnetic DoF reflected in the renormalization of the phonon self-energy parameters well above the spin-solid phase (TN ~ 12 K) till temperature as high as ~ 3TN, evidences broken spin rotational symmetry deep into the paramagnetic phase. In particular, all the observed first-order phonon modes show softening of varying degree below ~3TN, and low-frequency phonons become sharper, while the high-frequency phonons show broadening attributed to the additional available magnetic damping channels. We also observed a large number of high-energy modes, 39 in total, attributed to the electronic transitions between 4f-levels of the rare-earth Eu3+ ion and these modes shows anomalous temperature evolution as well as mixing of the crystal-field split levels attributed to the strong coupling of electronic and lattice DoF.

قيم البحث

اقرأ أيضاً

Lattice and spin excitations have been studied by Raman scattering in hexagonal YbMnO3 single crystals. The temperature dependences of the phonon modes show that the E2 mode at 256 cm-1 related to the displacement of Mn and O ions in a-b plane is cou pled to the spin order. The A1 phonon mode at 678 cm-1 presents a soft mode behavior at the Neel temperature. Connected to the motion of the apical oxygen ions along the c direction, this mode controls directly the Mn-Mn interactions between adjacent Mn planes and the superexchange path. Crystal field and magnon mode excitations have been identified. The temperature investigation of the spin excitations shows that the spin structure is strongly influence by the Yb-Mn interaction. Under a magnetic field along the c axis, we have investigated the magnetic reordering and its impact on the spin excitations.
93 - C. Toulouse , L. Chaix , J. Liu 2014
We used Raman and terahertz spectroscopies to investigate lattice and magnetic excitations and their cross-coupling in the hexagonal YMnO3 multiferroic. Two phonon modes are strongly affected by the magnetic order. Magnon excitations have been identi fied thanks to comparison with neutron measurements and spin wave calculations but no electromagnon has been observed. In addition, we evidenced two additional Raman active peaks. We have compared this observation with the anti-crossing between magnon and acoustic phonon branches measured by neutron. These optical measurements underly the unusual strong spin-phonon coupling.
In two-dimensional (2D) metallic kagome lattice materials, destructive interference of electronic hopping pathways around the kagome bracket can produce nearly localized electrons, and thus electronic bands that are flat in momentum space. When ferro magnetic order breaks the degeneracy of the electronic bands and splits them into the spin-up majority and spin-down minority electronic bands, quasiparticle excitations between the spin-up and spin-down flat bands should form a narrow localized spin-excitation Stoner continuum coexisting with well-defined spin waves in the long wavelengths. Here we report inelastic neutron scattering studies of spin excitations in 2D metallic Kagome lattice antiferromagnetic FeSn and paramagnetic CoSn, where angle resolved photoemission spectroscopy experiments found spin-polarized and nonpolarized flat bands, respectively, below the Fermi level. Although our initial measurements on FeSn indeed reveal well-defined spin waves extending well above 140 meV coexisting with a flat excitation at 170 meV, subsequent experiments on CoSn indicate that the flat mode actually arises mostly from hydrocarbon scattering of the CYTOP-M commonly used to glue the samples to aluminum holder. Therefore, our results established the evolution of spin excitations in FeSn and CoSn, and identified an anomalous flat mode that has been overlooked by the neutron scattering community for the past 20 years.
Raman scattering measurements on BiFeO3 single crystals show an important coupling between the magnetic order and lattice vibrations. The temperature evolution of phonons shows that the lowest energy E and A1 phonon modes are coupled to the spin orde r up to the Neel temperature. Furthermore, low temperature anomalies associated with the spin re-orientation are observed simultaneously in both the E phonon and the magnon. These results suggest that magnetostriction plays an important role in BiFeO3.
Motivated by the recently synthesized insulating nickelate Ni$_2$Mo$_3$O$_8$, which has been reported to have an unusual non-collinear magnetic order of Ni$^{2+}$ $S=1$ moments with a nontrivial angle between adjacent spins, we construct an effective spin-1 model on the honeycomb lattice, with the exchange parameters determined with the help of first principles electronic structure calculations. The resulting bilinear-biquadratic model, supplemented with the realistic crystal-field induced anisotropy, favors the collinear Neel state. We find that the crucial key to explaining the observed noncollinear spin structure is the inclusion of the Dzyaloshinskii--Moriya (DM) interaction between the neighboring spins. By performing the variational mean-field and linear spin-wave theory (LSWT) calculations, we determine that a realistic value of the DM interaction $Dapprox 2.78$ meV is sufficient to quantitatively explain the observed angle between the neighboring spins. We furthermore compute the spectrum of magnetic excitations within the LSWT and random-phase approximation (RPA) which should be compared to future inelastic neutron measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا