ﻻ يوجد ملخص باللغة العربية
Modern browsers give access to several attributes that can be collected to form a browser fingerprint. Although browser fingerprints have primarily been studied as a web tracking tool, they can contribute to improve the current state of web security by augmenting web authentication mechanisms. In this paper, we investigate the adequacy of browser fingerprints for web authentication. We make the link between the digital fingerprints that distinguish browsers, and the biological fingerprints that distinguish Humans, to evaluate browser fingerprints according to properties inspired by biometric authentication factors. These properties include their distinctiveness, their stability through time, their collection time, their size, and the accuracy of a simple verification mechanism. We assess these properties on a large-scale dataset of 4,145,408 fingerprints composed of 216 attributes, and collected from 1,989,365 browsers. We show that, by time-partitioning our dataset, more than 81.3% of our fingerprints are shared by a single browser. Although browser fingerprints are known to evolve, an average of 91% of the attributes of our fingerprints stay identical between two observations, even when separated by nearly 6 months. About their performance, we show that our fingerprints weigh a dozen of kilobytes, and take a few seconds to collect. Finally, by processing a simple verification mechanism, we show that it achieves an equal error rate of 0.61%. We enrich our results with the analysis of the correlation between the attributes, and of their contribution to the evaluated properties. We conclude that our browser fingerprints carry the promise to strengthen web authentication mechanisms.
Browser fingerprinting consists in collecting attributes from a web browser to build a browser fingerprint. In this work, we assess the adequacy of browser fingerprints as an authentication factor, on a dataset of 4,145,408 fingerprints composed of 2
Prior measurement studies on browser fingerprinting have unfortunately largely excluded Web Audio API-based fingerprinting in their analysis. We address this issue by conducting the first systematic study of effectiveness of web audio fingerprinting
We present WPSE, a browser-side security monitor for web protocols designed to ensure compliance with the intended protocol flow, as well as confidentiality and integrity properties of messages. We formally prove that WPSE is expressive enough to pro
While there have been various studies towards Android apps and their development, there is limited discussion of the broader class of apps that fall in the fake area. Fake apps and their development are distinct from official apps and belong to the m
To investigate the status quo of SEAndroid policy customization, we propose SEPAL, a universal tool to automatically retrieve and examine the customized policy rules. SEPAL applies the NLP technique and employs and trains a wide&deep model to quickly