ترغب بنشر مسار تعليمي؟ اضغط هنا

AstroSat Observation of Non-Resonant Type-C QPOs in MAXI J1535-571

112   0   0.0 ( 0 )
 نشر من قبل Dipak Debnath
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic transient black hole candidate (BHC) MAXI J1535-571 was discovered on 2017 September 02 simultaneously by {it MAXI}/GSC and {it Swift}/BAT instruments. It has also been observed by Indias first multi-wavelength astronomy-mission satellite {it AstroSat}, during the rising phase of its 2017-18 outburst. We make both the spectral and the temporal analysis of the source during 2017 September 12-17 using data of {it AstroSat}s Large Area X-ray Proportional Counter (LAXPC) in the energy range of $3-40$~keV to infer the accretion flow properties of the source. Spectral analysis is done with the physical two-component advective flow (TCAF) solution-based {it fits} file. From the nature of the variation of the TCAF model fitted physical flow parameters, we conclude and confirm that the source was in the intermediate spectral state during our analysis period. We observe sharp type-C quasi-periodic oscillations (QPOs) in the frequency range of $sim 1.75-2.81$~Hz. For a better understanding of the nature and evolution of these type-C QPOs, a dynamic study of the power density spectra is done. We also investigate the origin of these QPOs from the shock oscillation model. We find that non-satisfaction of Rankine-Hugoniot conditions for non-dissipative shocks and not their resonance oscillations is the cause of the observed type-C QPOs.

قيم البحث

اقرأ أيضاً

We report the results of the analysis of an AstroSat observation of the Black Hole candidate MAXI J1535-571 during its Hard Intermediate state. We studied the evolution of the spectral and timing parameters of the source during the observation. The o bservation covered a period of $sim$5 days and consisted of 66 continuous segments, corresponding to individual spacecraft orbits. Each segment was analysed independently. The source count rate increased roughly linearly by $sim$30 %. We modelled the spectra as a combination of radiation from a thermal disk component and a power-law. The timing analysis revealed the presence of strong Quasi Periodic Oscillations with centroid frequency $ u_{rm{QPO}}$ fluctuating in the range 1.7-3.0 Hz. We found a tight correlation between the QPO centroid frequency $ u_{rm{QPO}}$ and the power-law spectral index $Gamma$, while $ u_{rm{QPO}}$ appeared not to be correlated with the linearly-increasing flux itself. We discuss the implications of these results on physical models of accretion.
We present the results of Target of Opportunity (ToO) observations made with AstroSat of the newly discovered black hole binary MAXI J1535-571. We detect prominent C-type Quasi-periodic Oscillations (QPOs) of frequencies varying from 1.85 Hz to 2.88 Hz, along with distinct harmonics in all the AstroSat observations. We note that while the fundamental QPO is seen in the 3 - 50 keV energy band, the harmonic is not significant above ~ 35 keV. The AstroSat observations were made in the hard intermediate state, as seen from state transitions observed by MAXI and Swift. We attempt spectral modelling of the broadband data (0.7-80 keV) provided by AstroSat using phenomenological and physical models. The spectral modelling using nthComp gives a photon index in the range between 2.18-2.37 and electron temperature ranging from 21 to 63 keV. The seed photon temperature is within 0.19 to 0.29 keV. The high flux in 0.3 - 80 keV band corresponds to a luminosity varying from 0.7 to 1.07 L_Edd assuming the source to be at a distance of 8 kpc and hosting a black hole with a mass of 6 M$_{odot}$. The physical model based on the two-component accretion flow gives disc accretion rates as high as ~ 1 $dot{m}_{Edd}$ and halo rate ~ 0.2 $dot{m}_{Edd}$ respectively. The near Eddington accretion rate seems to be the main reason for the unprecedented high flux observed from this source. The two-component spectral fitting of AstroSat data also provides an estimate of a black hole mass between 5.14 to 7.83 M$_{odot}$.
We report the results from textit{AstroSat} observations of the transient Galactic black hole X-ray binary MAXI J1535-571 during its hard-intermediate state of the 2017 outburst. We systematically study the individual and joint spectra from two simul taneously observing textit{AstroSat} X-ray instruments, and probe and measure a number of parameter values of accretion disc, corona and reflection from the disc in the system using models with generally increasing complexities. Using our broadband ($1.3-70$ keV) X-ray spectrum, we clearly show that a soft X-ray instrument, which works below $sim 10-12$ keV, alone cannot correctly characterize the Comptonizing component from the corona, thus highlighting the importance of broadband spectral analysis. By fitting the reflection spectrum with the latest version of the textsc{relxill} family of relativistic reflection models, we constrain the black holes dimensionless spin parameter to be $0.67^{+0.16}_{-0.04}$. We also jointly use the reflection spectral component (textsc{relxill}) and a general relativistic thin disc component (texttt{Kerrbb}), and estimate the black holes mass and distance to be $10.39_{-0.62}^{+0.61} M_{odot}$ and $5.4_{-1.1}^{+1.8}$ kpc respectively.
We report on the results of optical, near-infrared (NIR) and mid-infrared observations of the black hole X-ray binary candidate (BHB) MAXI J1535-571 during its 2017/2018 outburst. During the first part of the outburst (MJD 58004-58012), the source sh ows an optical-NIR spectrum that is consistent with an optically thin synchrotron power-law from a jet. After MJD 58015, however, the source faded considerably, the drop in flux being much more evident at lower frequencies. Before the fading, we measure a de-reddened flux density of $gtrsim$100 mJy in the mid-infrared, making MAXI J1535-571 one of the brightest mid-infrared BHBs known so far. A significant softening of the X-ray spectrum is evident contemporaneous with the infrared fade. We interpret it as due to the suppression of the jet emission, similar to the accretion-ejection coupling seen in other BHBs. However, MAXI J1535-571 did not transition smoothly to the soft state, instead showing X-ray hardness deviations, associated with infrared flaring. We also present the first mid-IR variability study of a BHB on minute timescales, with a fractional rms variability of the light curves of $sim 15-22 %$, which is similar to that expected from the internal shock jet model, and much higher than the optical fractional rms ($lesssim 7 %$). These results represent an excellent case of multi-wavelength jet spectral-timing and demonstrate how rich, multi-wavelength time-resolved data of X-ray binaries over accretion state transitions can help refining models of the disk-jet connection and jet launching in these systems.
A new black hole X-ray binary (BHXRB) MAXI J1535-571 was discovered by MAXI during its outburst in 2017. Using observations taken by the first Chinese X-ray satellite, the Hard X-ray Modulation Telescope (dubbed as Insight-HXMT), we perform a joint s pectral analysis (2-150 keV) in both energy and time domains. The energy spectra provide the essential input for probing the intrinsic Quasi-Periodic Oscillation (QPO) fractional rms spectra (FRS). Our results show that during the intermediate state, the energy spectra are in general consistent with those reported by Swift/XRT and NuSTAR. However, the QPO FRS become harder and the FRS residuals may suggest the presence of either an additional power-law component in the energy spectrum or a turn-over in the intrinsic QPO FRS at high energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا