ﻻ يوجد ملخص باللغة العربية
Let A be a finite subset of an abelian group (G, +). Let h $ge$ 2 be an integer. If |A| $ge$ 2 and the cardinality |hA| of the h-fold iterated sumset hA = A + $times$ $times$ $times$ + A is known, what can one say about |(h -- 1)A| and |(h + 1)A|? It is known that |(h -- 1)A| $ge$ |hA| (h--1)/h , a consequence of Pl{u}nneckes inequality. Here we improve this bound with a new approach. Namely, we model the sequence |hA| h$ge$0 with the Hilbert function of a standard graded algebra. We then apply Macaulays 1927 theorem on the growth of Hilbert functions, and more specifically a recent condensed version of it. Our bound implies |(h -- 1)A| $ge$ $theta$(x, h) |hA| (h--1)/h for some factor $theta$(x, h) > 1, where x is a real number closely linked to |hA|. Moreover, we show that $theta$(x, h) asymptotically tends to e $approx$ 2.718 as |A| grows and h lies in a suitable range varying with |A|.
We study the closed convex hull of various collections of Hilbert functions. Working over a standard graded polynomial ring with modules that are generated in degree zero, we describe the supporting hyperplanes and extreme rays for the cones generate
We had shown earlier that for a standard graded ring $R$ and a graded ideal $I$ in characteristic $p>0$, with $ell(R/I) <infty$, there exists a compactly supported continuous function $f_{R, I}$ whose Riemann integral is the HK multiplicity $e_{HK}(R
In this presentation we shall deal with some aspects of the theory of Hilbert functions of modules over local rings, and we intend to guide the reader along one of the possible routes through the last three decades of progress in this area of dynamic
It remains an open problem to classify the Hilbert functions of double points in $mathbb{P}^2$. Given a valid Hilbert function $H$ of a zero-dimensional scheme in $mathbb{P}^2$, we show how to construct a set of fat points $Z subseteq mathbb{P}^2$ of
Here we compute Hilbert-Kunz functions of any nontrivial ruled surface over ${bf P}^1_k$, with respect to all ample line bundles on it.