ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quantitative Portrait of Wikipedias High-Tempo Collaborations during the 2020 Coronavirus Pandemic

81   0   0.0 ( 0 )
 نشر من قبل Brian Keegan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The 2020 coronavirus pandemic was a historic social disruption with significant consequences felt around the globe. Wikipedia is a freely-available, peer-produced encyclopedia with a remarkable ability to create and revise content following current events. Using 973,940 revisions from 134,337 editors to 4,238 articles, this study examines the dynamics of the English Wikipedias response to the coronavirus pandemic through the first five months of 2020 as a quantitative portrait describing the emergent collaborative behavior at three levels of analysis: article revision, editor contributions, and network dynamics. Across multiple data sources, quantitative methods, and levels of analysis, we find four consistent themes characterizing Wikipedias unique large-scale, high-tempo, and temporary online collaborations: external events as drivers of activity, spillovers of activity, complex patterns of editor engagement, and the shadows of the future. In light of increasing concerns about online social platforms abilities to govern the conduct and content of their users, we identify implications from Wikipedias coronavirus collaborations for improving the resilience of socio-technical systems during a crisis.



قيم البحث

اقرأ أيضاً

The COVID-19 pandemic has shaken the world to its core and has provoked an overnight exodus of developers that normally worked in an office setting to working from home. The magnitude of this shift and the factors that have accompanied this new unpla nned work setting go beyond what the software engineering community has previously understood to be remote work. To find out how developers and their productivity were affected, we distributed two surveys (with a combined total of 3,634 responses that answered all required questions) -- weeks apart to understand the presence and prevalence of the benefits, challenges, and opportunities to improve this special circumstance of remote work. From our thematic qualitative analysis and statistical quantitative analysis, we find that there is a dichotomy of developer experiences influenced by many different factors (that for some are a benefit, while for others a challenge). For example, a benefit for some was being close to family members but for others having family members share their working space and interrupting their focus, was a challenge. Our surveys led to powerful narratives from respondents and revealed the scale at which these experiences exist to provide insights as to how the future of (pandemic) remote work can evolve.
200 - Joel Dyer , Blas Kolic 2020
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in social media data, thus natural language analysis of this text enables near-to-real-time monitoring of indicators of public risk perception. We compare key epidemiological indicators of the progression of the pandemic with indicators of the public perception of the pandemic constructed from ~20 million unique Covid-19-related tweets from 12 countries posted between 10th March -- 14th June 2020. We find evidence of psychophysical numbing: Twitter users increasingly fixate on mortality, but in a decreasingly emotional and increasingly analytic tone. Semantic network analysis based on word co-occurrences reveals changes in the emotional framing of Covid-19 casualties that are consistent with this hypothesis. We also find that the average attention afforded to national Covid-19 mortality rates is modelled accurately with the Weber-Fechner and power law functions of sensory perception. Our parameter estimates for these models are consistent with estimates from psychological experiments, and indicate that users in this dataset exhibit differential sensitivity by country to the national Covid-19 death rates. Our work illustrates the potential utility of social media for monitoring public risk perception and guiding public communication during crisis scenarios.
People eager to learn about a topic can access Wikipedia to form a preliminary opinion. Despite the solid revision process behind the encyclopedias articles, the users exploration process is still influenced by the hyperlinks network. In this paper, we shed light on this overlooked phenomenon by investigating how articles describing complementary subjects of a topic interconnect, and thus may shape readers exposure to diverging content. To quantify this, we introduce the exposure to diverse information, a metric that captures how users exposure to multiple subjects of a topic varies click-after-click by leveraging navigation models. For the experiments, we collected six topic-induced networks about polarizing topics and analyzed the extent to which their topologies induce readers to examine diverse content. More specifically, we take two sets of articles about opposing stances (e.g., guns control and guns right) and measure the probability that users move within or across the sets, by simulating their behavior via a Wikipedia-tailored model. Our findings show that the networks hinder users to symmetrically explore diverse content. Moreover, on average, the probability that the networks nudge users to remain in a knowledge bubble is up to an order of magnitude higher than that of exploring pages of contrasting subjects. Taken together, those findings return a new and intriguing picture of Wikipedias network structural influence on polarizing issues exploration.
As the COVID-19 pandemic is disrupting life worldwide, related online communities are popping up. In particular, two new communities, /r/China flu and /r/Coronavirus, emerged on Reddit and have been dedicated to COVID- related discussions from the ve ry beginning of this pandemic. With /r/Coronavirus promoted as the official community on Reddit, it remains an open question how users choose between these two highly-related communities. In this paper, we characterize user trajectories in these two communities from the beginning of COVID-19 to the end of September 2020. We show that new users of /r/China flu and /r/Coronavirus were similar from January to March. After that, their differences steadily increase, evidenced by both language distance and membership prediction, as the pandemic continues to unfold. Furthermore, users who started at /r/China flu from January to March were more likely to leave, while those who started in later months tend to remain highly loyal. To understand this difference, we develop a movement analysis framework to understand membership changes in these two communities and identify a significant proportion of /r/China flu members (around 50%) that moved to /r/Coronavirus in February. This movement turns out to be highly predictable based on other subreddits that users were previously active in. Our work demonstrates how two highly-related communities emerge and develop their own identity in a crisis, and highlights the important role of existing communities in understanding such an emergence.
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortl y after the outbreak of the coronavirus. Next, we analyze the hoarding and anti-hoarding patterns of over 42,000 unique Twitter users in the United States from March 1 to April 30, 2020, and dissect the hoarding-related tweets by age, gender, and geographic location. We find the percentage of females in both hoarding and anti-hoarding groups is higher than that of the general Twitter user population. Furthermore, using topic modeling, we investigate the opinions expressed towards the hoarding behavior by categorizing these topics according to demographic and geographic groups. We also calculate the anxiety scores for the hoarding and anti-hoarding related tweets using a lexical approach. By comparing their anxiety scores with the baseline Twitter anxiety score, we reveal further insights. The LIWC anxiety mean for the hoarding-related tweets is significantly higher than the baseline Twitter anxiety mean. Interestingly, beer has the highest calculated anxiety score compared to other hoarded items mentioned in the tweets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا