ﻻ يوجد ملخص باللغة العربية
We analyze the prospects for using gravitational waves produced in early universe phase transitions as a complementary probe of the flavor anomalies in B meson decays. We focus on the Left-Right SU(4) Model, for which the strength of the observed lepton universality violation and consistency with other experiments impose a vast hierarchy between the symmetry breaking scales. This leads to a multipeaked gravitational wave signature within the reach of upcoming gravitational wave detectors.
We describe a unique gravitational wave signature for a class of models with a vast hierarchy between the symmetry breaking scales. The unusual shape of the signal is a result of the overlapping contributions to the stochastic gravitational wave back
We investigate the possible formation of a Bose-Einstein condensed phase of pions in the early Universe at nonvanishing values of lepton flavor asymmetries. A hadron resonance gas model with pion interactions, based on first-principle lattice QCD sim
We study an extension of the Standard Model (SM) in which two copies of the SM Higgs doublet are added to the scalar sector. These extra doublets do not develop a vacuum expectation value, hence, they are textit{inert}. This essentially leads to a 3-
We show that new physics models without new flavor violating interactions can explain the recent anomalies in the $bto sell^+ell^-$ transitions. The $bto sell^+ell^-$ arises from a $Z$ penguin which automatically predicts the $V-A$ structure for the
We did a model independent phenomenological study of baryogenesis via leptogenesis, neutrinoless double beta decay (NDBD) and charged lepton flavour violation (CLFV) in a generic left-right symmetric model (LRSM) where neutrino mass originates from t