ترغب بنشر مسار تعليمي؟ اضغط هنا

Total Deep Variation: A Stable Regularizer for Inverse Problems

51   0   0.0 ( 0 )
 نشر من قبل Thomas Pock
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Various problems in computer vision and medical imaging can be cast as inverse problems. A frequent method for solving inverse problems is the variational approach, which amounts to minimizing an energy composed of a data fidelity term and a regularizer. Classically, handcrafted regularizers are used, which are commonly outperformed by state-of-the-art deep learning approaches. In this work, we combine the variational formulation of inverse problems with deep learning by introducing the data-driven general-purpose total deep variation regularizer. In its core, a convolutional neural network extracts local features on multiple scales and in successive blocks. This combination allows for a rigorous mathematical analysis including an optimal control formulation of the training problem in a mean-field setting and a stability analysis with respect to the initial values and the parameters of the regularizer. In addition, we experimentally verify the robustness against adversarial attacks and numerically derive upper bounds for the generalization error. Finally, we achieve state-of-the-art results for numerous imaging tasks.

قيم البحث

اقرأ أيضاً

210 - Tom Tirer , Raja Giryes 2019
Ill-posed linear inverse problems appear in many image processing applications, such as deblurring, super-resolution and compressed sensing. Many restoration strategies involve minimizing a cost function, which is composed of fidelity and prior terms , balanced by a regularization parameter. While a vast amount of research has been focused on different prior models, the fidelity term is almost always chosen to be the least squares (LS) objective, that encourages fitting the linearly transformed optimization variable to the observations. In this paper, we examine a different fidelity term, which has been implicitly used by the recently proposed iterative denoising and backward projections (IDBP) framework. This term encourages agreement between the projection of the optimization variable onto the row space of the linear operator and the pseudo-inverse of the linear operator (back-projection) applied on the observations. We analytically examine the difference between the two fidelity terms for Tikhonov regularization and identify cases (such as a badly conditioned linear operator) where the new term has an advantage over the standard LS one. Moreover, we demonstrate empirically that the behavior of the two induced cost functions for sophisticated convex and non-convex priors, such as total-variation, BM3D, and deep generative models, correlates with the obtained theoretical analysis.
We study inverse problems for the Poisson equation with source term the divergence of an $mathbf{R}^3$-valued measure, that is, the potential $Phi$ satisfies $$ Delta Phi= text{div} boldsymbol{mu}, $$ and $boldsymbol{mu}$ is to be reconstructed k nowing (a component of) the field grad $Phi$ on a set disjoint from the support of $boldsymbol{mu}$. Such problems arise in several electro-magnetic contexts in the quasi-static regime, for instance when recovering a remanent magnetization from measurements of its magnetic field. We develop methods for recovering $boldsymbol{mu}$ based on total variation regularization. We provide sufficient conditions for the unique recovery of $boldsymbol{mu}$, asymptotically when the regularization parameter and the noise tend to zero in a combined fashion, when it is uni-directional or when the magnetization has a support which is sparse in the sense that it is purely 1-unrectifiable. Numerical examples are provided to illustrate the main theoretical results.
Deterministic interpolation and quadrature methods are often unsuitable to address Bayesian inverse problems depending on computationally expensive forward mathematical models. While interpolation may give precise posterior approximations, determinis tic quadrature is usually unable to efficiently investigate an informative and thus concentrated likelihood. This leads to a large number of required expensive evaluations of the mathematical model. To overcome these challenges, we formulate and test a multilevel adaptive sparse Leja algorithm. At each level, adaptive sparse grid interpolation and quadrature are used to approximate the posterior and perform all quadrature operations, respectively. Specifically, our algorithm uses coarse discretizations of the underlying mathematical model to investigate the parameter space and to identify areas of high posterior probability. Adaptive sparse grid algorithms are then used to place points in these areas, and ignore other areas of small posterior probability. The points are weighted Leja points. As the model discretization is coarse, the construction of the sparse grid is computationally efficient. On this sparse grid, the posterior measure can be approximated accurately with few expensive, fine model discretizations. The efficiency of the algorithm can be enhanced further by exploiting more than two discretization levels. We apply the proposed multilevel adaptive sparse Leja algorithm in numerical experiments involving elliptic inverse problems in 2D and 3D space, in which we compare it with Markov chain Monte Carlo sampling and a standard multilevel approximation.
118 - Hongpeng Sun 2020
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The a ugmented Lagrangian method (also called as method of multipliers) is widely used for lots of smooth or nonsmooth variational problems. However, its efficiency usually heavily depends on solving the coupled and nonlinear system together and simultaneously, which is very complicated and highly coupled for total generalization variation. With efficient primal-dual semismooth Newton methods for the complicated linear subproblems involving total generalized variation, we investigated a highly efficient and competitive algorithm compared to some efficient first-order method. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods.
We present a non-trivial integration of dimension-independent likelihood-informed (DILI) MCMC (Cui, Law, Marzouk, 2016) and the multilevel MCMC (Dodwell et al., 2015) to explore the hierarchy of posterior distributions. This integration offers severa l advantages: First, DILI-MCMC employs an intrinsic likelihood-informed subspace (LIS) (Cui et al., 2014) -- which involves a number of forward and adjoint model simulations -- to design accelerated operator-weighted proposals. By exploiting the multilevel structure of the discretised parameters and discretised forward models, we design a Rayleigh-Ritz procedure to significantly reduce the computational effort in building the LIS and operating with DILI proposals. Second, the resulting DILI-MCMC can drastically improve the sampling efficiency of MCMC at each level, and hence reduce the integration error of the multilevel algorithm for fixed CPU time. To be able to fully exploit the power of multilevel MCMC and to reduce the dependencies of samples on different levels for a parallel implementation, we also suggest a new pooling strategy for allocating computational resources across different levels and constructing Markov chains at higher levels conditioned on those simulated on lower levels. Numerical results confirm the improved computational efficiency of the multilevel DILI approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا