ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological Dirac Semimetal Phase in Bismuth Based Anode Materials for Sodium-Ion Batteries

97   0   0.0 ( 0 )
 نشر من قبل Wei-Chi Chiu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bismuth has recently attracted interest in connection with Na-ion battery anodes due to its high volumetric capacity. It reacts with Na to form Na$_3$Bi which is a prototypical Dirac semimetal with a nontrivial electronic structure. Density-functional-theory based first-principles calculations are playing a key role in understanding the fascinating electronic structure of Na$_3$Bi and other topological materials. In particular, the strongly-constrained-and-appropriately-normed (SCAN) meta-generalized-gradient-approximation (meta-GGA) has shown significant improvement over the widely used generalized-gradient-approximation (GGA) scheme in capturing energetic, structural, and electronic properties of many classes of materials. Here, we discuss the electronic structure of Na$_3$Bi within the SCAN framework and show that the resulting Fermi velocities and {it s}-band shift around the $Gamma$ point are in better agreement with experiments than the corresponding GGA predictions. SCAN yields a purely spin-orbit-coupling (SOC) driven Dirac semimetal state in Na$_3$Bi in contrast with the earlier GGA results. Our analysis reveals the presence of a topological phase transition from the Dirac semimetal to a trivial band insulator phase in Na$_{3}$Bi$_{x}$Sb$_{1-x}$ alloys as the strength of the SOC varies with Sb content, and gives insight into the role of the SOC in modulating conduction properties of Na$_3$Bi.



قيم البحث

اقرأ أيضاً

The diversified essential properties of the stage-n graphite alkali-intercalation compounds are thoroughly explored by the first-principles calculations. According to their main features, the lithium and non-lithium materials might be quite different from each other in stacking configurations, the intercalated alkali-atom concentrations, the free conduction electron densities, and the atom-dominated & (carbon, alkali)-co-dominated energy bands. The close relations between the alkali-doped metallic behaviors and the geometric symmetries will be clarified through the interlayer atomic interactions, in which the significant alkali-carbon chemical bondings are fully examined from the atom- and orbital-decomposed van Hove singularities. The blue shift of the Fermi level, the n-type doping, is clearly identified from the low-energy features of the density of states. This study is able to provide the partial information about anode of Li+-based battery. There are certain important differences between AC$_6$/AC$_8$ and Li$_8$Si$_4$O$_{12}$.
269 - Shijun Zhao , Wei Kang 2014
The capacity and stability of constituent electrodes determine the performance of Li-ion batteries. In this study, density functional theory is employed to explore the potential application of recently synthesized two dimensional phosphorene as elect rode materials. Our results show that Li atoms can bind strongly with phosphorene monolayer and double layer with significant electron transfer. Besides, the structure of phosphorene is not much influenced by lithiation and the volume change is only 0.2%. A semiconducting to metallic transition is observed after lithiation. The diffusion barrier is calculated to 0.76 and 0.72 eV on monolayer and double layer phosphorene. The theoretical specific capacity of phosphorene monolayer is 432.79 mAh/g, which is larger than other commercial anodes materials. Our findings show that the high capacity, low open circuit voltage, small volume change and electrical conductivity of phosphorene make it a good candidate as electrode material.
Based on their formation mechanisms, Dirac points in three-dimensional systems can be classified as accidental or essential. The former can be further distinguished into type-I and type-II, depending on whether the Dirac cone spectrum is completely t ipped over along certain direction. Here, we predict the coexistence of all three kinds of Dirac points in the low-energy band structure of CaAgBi-family materials with a stuffed Wurtzite structure. Two pairs of accidental Dirac points reside on the rotational axis, with one pair being type-I and the other pair type-II; while another essential Dirac point is pinned at the high symmetry point on the Brillouin zone boundary. Due to broken inversion symmetry, the band degeneracy around accidental Dirac points is completely lifted except along the rotational axis, which may enable the splitting of chiral carriers at a ballistic p-n junction with a double negative refraction effect. We clarify their symmetry protections, and find both the Dirac-cone and Fermi arc topological surface states.
Graphyne, a single atomic layer structure of the carbon six-member rings connected by one acetilenic linkage, is a promising anode of rechargeable batteries. In this paper, a first-principle study has been carried out on graphyne as a new candidate f or the anode material of magnesium-ion batteries, using density functional theory calculations. The main focus is on the magnesium adsorption on graphyne surface. The structural properties such as adsorption height and energy, the most stable adsorption sites, the Band structure and DOS of the pristine graphyne the diverse Mg-decorated graphyne structures, and energy barrier against Mg diffusion are also calculated. As a consequence of the band structure and DOS of graphyne structures, it is found that the pristine graphyne and the Mg-decorated graphyne structures show a semiconducting nature and metallic behavior, respectively. Moreover, the migration behavior of Mg on graphyne for the main diffusion paths is determined by the Nudged Elastic Band (NEB) method.
176 - Huinan Xia , Yang Li , Min Cai 2018
Three-dimensional (3D) topological Dirac semimetal, when thinned down to 2D few layers, is expected to possess gapped Dirac nodes via quantum confinement effect and concomitantly display the intriguing quantum spin Hall (QSH) insulator phase. However , the 3D-to-2D crossover and the associated topological phase transition, which is valuable for understanding the topological quantum phases, remain unexplored. Here, we synthesize high-quality Na3Bi thin films with R3*R3 reconstruction on graphene, and systematically characterize their thickness-dependent electronic and topological properties by scanning tunneling microscopy/spectroscopy in combination with first-principles calculations. We demonstrate that Dirac gaps emerge in Na3Bi films, providing spectroscopic evidences of dimensional crossover from a 3D semimetal to a 2D topological insulator. Importantly, the Dirac gaps are revealed to be of sizable magnitudes on 3 and 4 monolayers (72 and 65 meV, respectively) with topologically nontrivial edge states. Moreover, the Fermi energy of a Na3Bi film can be tuned via certain growth process, thus offering a viable way for achieving charge neutrality in transport. The feasibility of controlling Dirac gap opening and charge neutrality enables realizing intrinsic high-temperature QSH effect in Na3Bi films and achieving potential applications in topological devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا