ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonances induced by Spiking Time Dependent Plasticity

201   0   0.0 ( 0 )
 نشر من قبل Pau Vilimelis Aceituno
 تاريخ النشر 2020
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural populations exposed to a certain stimulus learn to represent it better. However, the process that leads local, self-organized rules to do so is unclear. We address the question of how can a neural periodic input be learned and use the Differential Hebbian Learning framework, coupled with a homeostatic mechanism to derive two self-consistency equations that lead to increased responses to the same stimulus. Although all our simulations are done with simple Leaky-Integrate and Fire neurons and standard Spiking Time Dependent Plasticity learning rules, our results can be easily interpreted in terms of rates and population codes.



قيم البحث

اقرأ أيضاً

We show that the local Spike Timing-Dependent Plasticity (STDP) rule has the effect of regulating the trans-synaptic weights of loops of any length within a simulated network of neurons. We show that depending on STDPs polarity, functional loops are formed or eliminated in networks driven to normal spiking conditions by random, partially correlated inputs, where functional loops comprise weights that exceed a non-zero threshold. We further prove that STDP is a form of loop-regulating plasticity for the case of a linear network comprising random weights drawn from certain distributions. Thus a notable local synaptic learning rule makes a specific prediction about synapses in the brain in which standard STDP is present: that under normal spiking conditions, they should participate in predominantly feed-forward connections at all scales. Our model implies that any deviations from this prediction would require a substantial modification to the hypothesized role for standard STDP. Given its widespread occurrence in the brain, we predict that STDP could also regulate long range synaptic loops among individual neurons across all brain scales, up to, and including, the scale of global brain network topology.
Rhythmic activity has been associated with a wide range of cognitive processes. Previous studies have shown that spike-timing-dependent plasticity can facilitate the transfer of rhythmic activity downstream the information processing pathway. However , STDP has also been known to generate strong winner-take-all like competitions between subgroups of correlated synaptic inputs. Consequently, one might expect that STDP would induce strong competition between different rhythmicity channels thus preventing the multiplexing of information across different frequency channels. This study explored whether STDP facilitates the multiplexing of information across multiple frequency channels, and if so, under what conditions. We investigated the STDP dynamics in the framework of a model consisting of two competing subpopulations of neurons that synapse in a feedforward manner onto a single postsynaptic neuron. Each sub-population was assumed to oscillate in an independent manner and in a different frequency band. To investigate the STDP dynamics, a mean field Fokker-Planck theory was developed in the limit of the slow learning rate. Surprisingly, our theory predicted limited interactions between the different sub-groups. Our analysis further revealed that the interaction between these channels was mainly mediated by the shared component of the mean activity. Next, we generalized these results beyond the simplistic model using numerical simulations. We found that for a wide range of parameters, the system converged to a solution in which the post-synaptic neuron responded to both rhythms. Nevertheless, all the synaptic weights remained dynamic and did not converge to a fixed point. These findings imply that STDP can support the multiplexing of rhythmic information and demonstrate how functionality can be retained in the face of continuous remodeling of all the synaptic weights.
Latency reduction of postsynaptic spikes is a well-known effect of Synaptic Time-Dependent Plasticity. We expand this notion for long postsynaptic spike trains, showing that, for a fixed input spike train, STDP reduces the number of postsynaptic spik es and concentrates the remaining ones. Then we study the consequences of this phenomena in terms of coding, finding that this mechanism improves the neural code by increasing the signal-to-noise ratio and lowering the metabolic costs of frequent stimuli. Finally, we illustrate that the reduction of postsynaptic latencies can lead to the emergence of predictions.
Coarse-graining microscopic models of biological neural networks to obtain mesoscopic models of neural activities is an essential step towards multi-scale models of the brain. Here, we extend a recent theory for mesoscopic population dynamics with st atic synapses to the case of dynamic synapses exhibiting short-term plasticity (STP). Under the assumption that spike arrivals at synapses have Poisson statistics, we derive analytically stochastic mean-field dynamics for the effective synaptic coupling between finite-size populations undergoing Tsodyks-Markram STP. The novel mean-field equations account for both finite number of synapses and correlations between the neurotransmitter release probability and the fraction of available synaptic resources. Comparisons with Monte Carlo simulations of the microscopic model show that in both feedforward and recurrent networks the mesoscopic mean-field model accurately reproduces stochastic realizations of the total synaptic input into a postsynaptic neuron and accounts for stochastic switches between Up and Down states as well as for population spikes. The extended mesoscopic population theory of spiking neural networks with STP may be useful for a systematic reduction of detailed biophysical models of cortical microcircuits to efficient and mathematically tractable mean-field models.
Brain plasticity refers to brains ability to change neuronal connections, as a result of environmental stimuli, new experiences, or damage. In this work, we study the effects of the synaptic delay on both the coupling strengths and synchronisation in a neuronal network with synaptic plasticity. We build a network of Hodgkin-Huxley neurons, where the plasticity is given by the Hebbian rules. We verify that without time delay the excitatory synapses became stronger from the high frequency to low frequency neurons and the inhibitory synapses increases in the opposite way, when the delay is increased the network presents a non-trivial topology. Regarding the synchronisation, only for small values of the synaptic delay this phenomenon is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا