ﻻ يوجد ملخص باللغة العربية
Since the hypervalent twist followed by reductive elimination is a general reaction pattern for hypervalent iodine reagents, mechanistic studies about the hypervalent twist step provide significant guidance for experiments. Our previous work showed there are two types of hypervalent twist models, i.e. apical twist and equatorial twist. We applied both hypervalent twist models to explain the isomerization mechanism of two important electrophilic trifluoromethylating reagents, Togni I and Togni II. To the best of our knowledge, there are less detailed studies about the different twist modes between both reagents, which are important to predict the right reaction mechanism and especially, understand well the differences of reactivity and stability. Here, we successfully identified Togni IIs isomerization pathway via equatorial twist, and suggested different hypervalent twist models should be considered to predict the right mechanisms of reactions with hypervalent iodine reagents.
To understand the effect of f-functions in predicting the right reaction mechanism for hypervalent iodine reagents, we adopt the Ahlrichs basis set family def2-SVP and def2-TZVP to revisit the potential energy surfaces of IBX-mediated oxidation and T
We explore an alternative to twist averaging in order to obtain more cost-effective and accurate extrapolations to the thermodynamic limit (TDL) for coupled cluster doubles (CCD) calculations. We seek a single twist angle to perform calculations at,
By combining analytical and numerical calculations, we investigate the minimal-energy shape of short DNA loops of approximately $100$ base pairs (bp). We show that in these loops the excess twist density oscillates as a response to an imposed bending
We present the calculation of the leading instanton contribution to the scaling dimensions of twist-two operators with arbitrary spin and to their structure constants in the OPE of two half-BPS operators in $mathcal N=4$ SYM. For spin-two operators w
We present a family of electron-based coupled-wire models of bosonic orbifold topological phases, referred to as twist liquids, in two spatial dimensions. All local fermion degrees of freedom are gapped and removed from the topological order by many-