ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering-free routing of surface plasmon polariton waves with optical null medium

268   0   0.0 ( 0 )
 نشر من قبل Mohammad Hosein Fakheri
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, guiding electromagnetic surface waves without sacrificing scattering losses through paths that have arbitrary shape bumps has gained a lot of interest due to its wealth of advantages in modern photonics and plasmonics devices. In this study, based on transformation optics (TO) methodology, a feasible approach to control the flow of surface plasmon plariton (SPPs) at metal-dielectric interfaces with arbitrary curvature is proposed. The obtained material becomes homogeneous and independent of the bumps geometry. That is, one constant material is required to route SPP waves without scattering the energy into the far-field region, which overcome the bottlenecks encountered in the previous works. Several numerical simulations are carried out to illustrate the capability of the propounded cloak to control the SPP flows at metal/dielectric interfaces. The unique designing approach introduced here may open a new horizon to nano-optics and downscaling of photonic circuits.

قيم البحث

اقرأ أيضاً

We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between th e incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerical calculations. The forces acting on larger particles are analyzed numerically, beyond the dipole approximation.
We report the suppression of loss of surface plasmon polariton propagating at the interface between silver film and optically pumped polymer with dye. Large magnitude of the effect enables a variety of applications of active nanoplasmonics. The exper imental study is accompanied by the development of the analytical description of the phenomenon and the solution of the controversy regarding the direction of the wavevector of a wave with a strong evanescent component in an active medium.
We consider the electromagnetic field near an interface between two media with arbitrary real frequency-dependent permittivities and permeabilities, under conditions supporting the surface plasmon-polariton (SPP) propagation. The dispersion of the el ectric and magnetic properties is taken into account based on the recent approach for description of the spin and momentum of electromagnetic field in complex media [Phys. Rev. Lett. 119, 073901 (2017); New J. Phys., 19, 123014 (2017)]. It involves the Minkowski momentum decomposition into the spin and orbital parts with the dispersion-modified permittivities and permeabilities. Explicit expressions are derived for spatial densities of the energy, energy flow, spin and orbital momenta and angular momenta of the transverse-magnetic (TM) SPP field. They are free from non-physical singularities; the only singular contribution describes a strictly localized surface part of the spin momentum that can be associated with the magnetization current in the conductive part of the SPP-supporting structure. On this ground, a phenomenological theory of the SPP-induced magnetization (predicted earlier based on the simplified microscopic approach) is outlined. Possible modifications and generalizations, including the transverse-electric (TE) SPP waves, are discussed.
Following to the recently published approach [Phys. Rev. Lett. 119, 073901 (2017); New J. Phys., 123014 (2017)], we refine and accomplish the general scheme for the unified description of the momentum and angular momentum in complex media. The equati ons for the canonical (orbital) and spin linear momenta, orbital and spin angular momenta in a lossless inhomogeneous dispersive medium are presented in the compact form analogous to the Brillouins relation for the energy. The results are applied to the surface plasmon-polariton (SPP) field, and the microscopic calculations support the phenomenological expectations. The refined general scheme correctly describes the unusual SPP properties (transverse spin, magnetization momentum) and additionally predicts the singular momentum contribution sharply localized at the metal-dielectric interface, which is confirmed by the microscopic analysis. The results can be useful in optical systems employing the structured light, especially for microoptics, plasmophotonics, optical sorting and micromanipulation.
We consider a generation of two-particle quantum states in the process of spontaneous parametric down-conversion of light by a dielectric nanoparticle with $chi^{(2)}$ response. As a particular example, we study the generation of surface plasmon-pola riton pairs with a ${rm GaAs}$ nanoparticle located at the silver-air interface. We show that for certain excitation geometries, ${rm N00N}$-states of surface plasmon-polariton pairs could be obtained. The effect can be physically interpreted as a result of quantum interference between pairs of induced sources, each emitting either signal or idler plasmon. We then relate the resulting ${rm N00N}$-pattern to the general symmetry properties of dyadic Greens function of a dipole emitter exciting surface waves. It renders the considered effect as a general way towards a robust generation of ${rm N00N}$-states of surface waves using spontaneous parametric down-conversion in $chi^{(2)}$ nanoparticles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا